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Abstract

Digital communication links operating under aggressive spectral reuse, high mobility, and power-
constrained architectures rely on equalization to mitigate intersymbol and intercarrier interference
introduced by band-limited channels, radio-frequency front-end imperfections, and multiuser
coupling. As carrier frequencies extend toward millimeter-wave and sub-terahertz bands, and
as baseband sampling becomes coarsely quantized for power efficiency, equalization strategies
must adapt to rapidly time-varying, frequency-selective, and hardware-impaired regimes. This
paper develops a broad technical treatment of equalization advances for next-generation systems
by analyzing linear, nonlinear, and learning-augmented detectors across single-carrier, multi-
carrier, and delay-Doppler waveforms. A unified mathematical perspective is used to connect
estimation-theoretic derivations, message-passing viewpoints, and optimization-based formula-
tions, highlighting performance-complexity-energy trade-offs under realistic constraints such
as low-resolution conversion, hybrid beamforming, and oscillator phase noise. Algorithmic ro-
bustness is examined under channel uncertainty, non-Gaussian disturbances, and structured
interference arising in massive multiple-antenna and cell-free architectures. Emphasis is placed
on stable numerical formulations, scalable preconditioning, and hardware-friendly updates that
map efficiently to fixed-point pipelines, systolic arrays, and modern accelerators. The discussion
integrates channel-shortening and sequence-detection ideas with iterative decoding, shows how
state-evolution tools predict operating points under large-system limits, and outlines regimes
where model-driven deep unrolling can improve convergence without sacrificing interpretability.
The paper articulates modeling assumptions, identifies key operating regions for different equal-
izer classes, and provides implementation notes that clarify latency, memory footprint, and data
movement bottlenecks. The overall goal is to present technically grounded guidance that helps
map waveform, coding, and front-end design choices to equalization architectures capable of
sustaining reliable and spectrally efficient links under stringent power and mobility conditions.

1 Introduction

Equalization in modern communication systems stands at the intersection of escalating architec-
tural complexity and increasingly adverse propagation conditions [1]. The continual demand for
higher spectral efficiency—driven by dense user deployments, aggressive frequency reuse, and
ever-expanding bandwidth—forces receivers to operate at lower signal-to-noise ratios, where
interference and channel distortion dominate performance. In such environments, mobility intro-
duces Doppler shifts that render channels time-selective, while oscillator imperfections lead to
carrier frequency and phase offsets that couple symbols across both time and frequency domains.
These effects jointly erode the separability assumptions underpinning classical equalization theory,
compelling the development of algorithms capable of managing spatiotemporal coupling and
stochastic nonstationarity without sacrificing real-time operation.



Table 1. Key Challenges in Modern Equalization

Domain Challenge / Description

Spectral Efficiency Dense deployments, frequency reuse, and bandwidth expan-
sion increase interference and ISl

Mobility Effects Doppler shifts and time-varying channels destroy symbol or-
thogonality

Hardware Constraints Low-resolution ADCs, nonlinear RF chains, and hybrid ana-

log-digital structures distort received signals
Multiuser / MIMO Coupling Spatially correlated interference requires joint multi-
dimensional equalization

At the same time, front-end power and cost constraints impose significant limitations on data
conversion and radio-frequency chain linearity. The adoption of low-resolution analog-to-digital
converters, for instance, reduces power consumption but introduces coarse quantization effects
that invalidate Gaussian noise models and degrade the performance of traditional linear equalizers.
Hybrid analog-digital beamforming architectures, increasingly employed in millimeter-wave and
massive MIMO systems, further complicate the problem by partitioning processing between
analog phase shifters and digital baseband components. The analog domain imposes hardware-
dependent constraints such as constant modulus and limited phase granularity, while the digital
stage inherits correlated and distorted signal statistics [2]. Together, these front-end impairments
necessitate equalization strategies that are aware of hardware nonidealities and capable of
integrating calibration and compensation functions within the same inferential loop.

The rise of multiuser and multiantenna systems exacerbates these challenges by introducing struc-
tured interference patterns that cannot be treated as uncorrelated noise. In large-scale antenna
arrays or distributed access networks, each user or access point may contribute interference that
is spatially or temporally correlated with desired signals. Classical equalizers designed for small,
uncoordinated channels break down under such coupling, as their underlying assumptions of
independence and limited dimensionality no longer hold. Equalizers must now operate jointly
across antennas, frequencies, and sometimes users, performing multi-dimensional filtering or de-
tection to disentangle overlapping streams. This high-dimensional regime transforms equalization
from a simple per-symbol correction into a large-scale inference problem, demanding scalable
and statistically principled algorithms that balance optimality against computational viability.

Beyond these architectural considerations, practical equalization must coexist with other re-
ceiver functions—channel estimation, synchronization, demodulation, and decoding—under strict
latency and complexity constraints. Because all of these tasks interact through shared signal
models and timing references, the equalizer’s role cannot be isolated: it must account for estima-
tion uncertainty, timing errors, and decoding feedback in a unified framework. Joint design of
equalization and channel estimation, for instance, allows iterative refinement where improved
equalized outputs enhance channel tracking, and refined channel estimates, in turn, sharpen
equalization accuracy. Similarly, synchronization loops that mitigate carrier and phase offsets rely
on accurate equalized symbols for feedback, making the relationship between synchronization
and equalization inherently circular. The challenge lies in orchestrating these modules such that
convergence and stability are preserved without violating real-time processing budgets.

A coherent perspective emerges by recognizing equalization as a problem of statistical inference
on a constrained observation model. The received signal can be viewed as a noisy, possibly
nonlinear transformation of transmitted symbols, where the transformation encodes both the
propagation channel and the front-end distortions. This viewpoint unifies linear filtering, decision
feedback, and sequence detection within a common probabilistic or optimization-based formalism.
Depending on the nature of the distortion and the signal-to-noise ratio, one may adopt different
inference strategies: a linear minimum mean-squared error (LMMSE) equalizer when the model is
approximately Gaussian and memoryless; a decision-feedback equalizer (DFE) when significant
postcursor intersymbol interference can be cancelled using previously detected symbols; or
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full-sequence detection methods such as the Viterbi algorithm, belief propagation, or message
passing when interference exhibits strong temporal or spatial memory.

In large-scale multiantenna or multicarrier systems, exact optimal equalization is computationally
prohibitive, motivating approximations based on random matrix theory and large-system analy-
sis [3]. These techniques provide deterministic equivalents for metrics such as mean-squared
error or signal-to-interference-plus-noise ratio, enabling parameter tuning and algorithm design
without exhaustive simulation. For example, in massive MIMO systems, asymptotic analyses
predict performance trends under various power allocations, regularization parameters, and
correlation structures, guiding the selection of linear precoding and equalization weights. The
resulting insights allow practitioners to design scalable algorithms—such as conjugate-gradient or
preconditioned iterative solvers—that achieve near-optimal performance with reduced arithmetic
complexity and predictable latency. These solvers exploit the structure of the channel matrix,
often leveraging Toeplitz, block-circulant, or sparsity properties to accelerate convergence.

When front-end impairments such as phase noise, IQ imbalance, or coarse quantization dominate,
equalization cannot be treated independently from hardware calibration and compensation. Joint
estimation and equalization frameworks become essential, wherein the equalizer parameters and
impairment models are inferred simultaneously. For example, in systems with severe phase noise,
the equalizer must account for random phase rotations across symbols, effectively embedding
phase tracking within the equalization recursion. In low-resolution systems, equalizers may
incorporate Bussgang decompositions or quantization-aware linearization techniques to maintain
consistency between model assumptions and actual hardware behavior [4]. These co-designed
methods prevent the onset of error floors that arise when front-end distortions are treated as
stationary additive noise—a simplification that fails in modern, power-constrained transceivers.

The increasing integration of equalization with broader signal processing and communication
system design underscores the shift from static, isolated modules to dynamic, interdependent
inference networks. Modern receivers, especially those implemented in software-defined or
reconfigurable architectures, can adapt equalizer structure and parameters in real time based
on environmental conditions and hardware states. This adaptability extends beyond parameter
tuning to encompass model reconfiguration—for instance, switching between linear and nonlinear
equalizers as mobility or interference conditions change. As computational architectures evolve,
equalization algorithms increasingly exploit parallelism, sparsity, and low-rank structure to achieve
real-time performance, leveraging advances in matrix factorization, convex optimization, and
machine learning-inspired estimation.

Designing equalizers for multicarrier waveforms requires attention to intercarrier interference
generated by Doppler spreads and oscillator phase noise. Orthogonal frequency-division multi-
plexing simplifies frequency-selective equalization through diagonalization, yet doubly selective
channels and phase noise destroy perfect orthogonality and motivate per-subcarrier interference
cancellation and windowed time-frequency processing. For emerging delay-Doppler waveforms,
sparsity in the scattering function can be exploited through structured transforms and sparse
recovery, allowing equalization to leverage compact support in the delay-Doppler domain. [5]

Learning-augmented methods offer a complementary approach by embedding domain knowledge
into neural architectures that respect known algebraic structure. Unrolled algorithms map iterative
inference to trainable layers with guaranteed initialization and monotonic descent properties
under mild conditions, reducing the risk of overfitting while improving convergence speed. When
combined with error-correction decoding in iterative loops, these methods can adapt to residual
impairments and refine soft information passed to the decoder.

The remainder of this paper develops a mathematical foundation for these perspectives, including
precise problem formulations, solvability conditions, and algorithmic schematics. Emphasis is
placed on transformations that reveal conditioning, such as whitening and unitary diagonalization,
and on proximal operators that capture nonlinearities introduced by quantization and clipping.
Complexity, memory footprint, and data movement are analyzed alongside numerical stabil-
ity concerns. The presentation favors constructs that connect directly to hardware, including
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polyphase structures for channel shortening, pipelined factor-graph message passing, and matrix
decompositions compatible with fixed-point arithmetic.

2 System and Channel Modeling Under Impairments

Table 2. Equalization Strategies under Different Conditions

Strategy Operating Conditions / Remarks

LMMSE Equalizer Near-Gaussian, memoryless environments; analyti-
cally tractable

Decision-Feedback Equalizer (DFE) Strong postcursor ISI; leverages past symbol deci-
sions

Sequence Detection / Message Passing  Channels with long memory or nonlinear distor-
tions; higher complexity

Learning-Augmented / Unrolled Models Data-driven refinement of inference; structure-
preserving neural layers

Table 3. Representative System and Channel Impairments

Impairment Model / Effect on Equalization

Phase Noise Multiplicative distortion e/¢!"!; induces nonlinear observation

IQ Imbalance Creates asymmetric complex baseband response

Quantization Coarse ADC (b bits); requires Bussgang or nonlinear likelihood mod-
eling

Hybrid Beamforming Reduced baseband rank via analog precoder/combiner; tighter con-
ditioning

Delay-Doppler Spread 2D convolution structure; sparse recovery in (v, 7) domain

A baseband discrete-time observation for single-carrier transmission over a frequency-selective
channel with length L can be expressed as

y =Hx+w,

where y € CV is the received vector, x € CV collects transmitted symbols, H € CV*N is a Toeplitz
convolution matrix derived from taps h[¢] for 0 < £ < L, and w ~ CN(0, 21). In high-mobility
scenarios with normalized Doppler v, a time-varying convolution emerges,

L-1
ylnl = Y hin €1 x[n— €] + winl,

¢=0

with h[n, €] satisfying a wide-sense stationary uncorrelated scattering model. Multicarrier trans-
mission with N, subcarriers adopts an OFDM stacking where the frequency-domain equalizer
ideally decouples tones; however, doubly selective channels create leakage described by

Ne—1
JIKl = )" Tem2[m] + WK,
m=0

where I has dominant diagonal and near-diagonal bands whose structure depends on Doppler
spread and windowing.

Phase noise modeled as a discrete-time Wiener process 6[n] multiplies the baseband signal by
e/%l"] yielding a nonlinear observation that, under small-angle approximations, admits a first-order
linearization

ylnl = (1+6[n]) Y hlelx[n - €] + wln],
14
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with an additional colored noise term induced by 8[n]. I1Q imbalance and carrier-frequency offset
introduce further asymmetries that can be folded into augmented models [6]. For low-resolution
data conversion with b bits per in-phase and quadrature components, the quantizer Q(-) yields

z=Q(y) = Q(Hx+w),

and equalization proceeds with either a Bussgang decomposition or a generalized likelihood that
retains saturation effects.

In multiantenna systems with M receive and K transmit dimensions, a block-fading model reads
Y =HX+W,

with H € CM*X having entries that may exhibit spatial correlation and line-of-sight components.
Hybrid analog-digital beamforming decomposes H through analog precoder Fgrr and combiner
Wik, so the effective baseband model becomes

Ygg = WHHFReXgp + WHEW.

The degrees of freedom at baseband are reduced relative to M and K, tightening numerical
conditioning and amplifying the role of prior information in equalization.

A delay-Doppler representation suited to high mobility constructs a 2D circular convolution

Zv,T] = Z Slv-v,t-7] X[V, 7] + W|[v, 1],

vt

where S is the sampled spreading function concentrating energy on a sparse set. Equaliza-
tion leverages the near-circulant structure and the sparsity pattern of S, which suggests using
structured transforms and iterative sparse recovery.

3 Linear Equalization: Conditioning, Optimality, and Regularization

Table 4. Linear Equalization Methods and Characteristics

Equalizer Objective / Formula Key Property

Zero-Forcing (ZF) Wz = (HPH)~"HH Cancels IS| perfectly; sen-
sitive to noise and ill-
conditioning

LMMSE W MMsE = Balances interference sup-

o2HH (o2HH" + 521! pression and noise amplifi-

cation

Frequency-Domain (Per-Subcarrier) X[k] = |HIEII:][r2]+a Y[k] a regulates trade-off; effi-
cient via FFT

Regularized / Structured miny 5 [|Aw-b||2+A||Gw||; Enforces smoothness or

sparsity via ¢; penalties

Linear equalizers address the estimation of x from y by minimizing a quadratic criterion. The
zero-forcing filter seeks Wr satisfying

Wz = argmin [WH - 1%,
whose solution for full column rank H is
-1
Wy = (HHH) HH.

Noise enhancement is controlled by the smallest singular value of H, motivating regularization.
The linear MMSE equalizer minimizes expected squared error under Gaussian assumptions,

Wi mmsE = arg mvsi/n E [lIx - Wyll3],
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Table 5. Conditioning, Regularization, and Optimization Aspects

Aspect Description / Implication

Condition Number «;(H) Ratio omax/omin indicates sensitivity; poor conditioning in-
creases noise amplification
Regularization Parameter a«  Derived as o2 /o2 in LMMSE; stabilizes inversion

Structured Regularizers Derivative-based (smoothness) or group-sparse (banded) priors
improve interpretability and robustness

First-Order Solvers Proximal / soft-thresholding iterations feasible for fixed-point
hardware

with closed-form
H H -
Wi mmse = RuxH (HRxxH + wa) .

Assuming independent symbols with variance o2 and white noise o2, this reduces to

w

-1
Wimmse = o2HH (afHHH + aﬁl)

In frequency domain, per-subcarrier equalization employs

Lo HKL o
XK = ey V6D

with & = 02 /o2 for LMMSE and a = 0 for ZF. When doubly selective effects spill energy onto
neighbors, a banded linear system arises with Toeplitz-circulant structure; efficient inversion
uses conjugate gradients with FFT-based multiplications. Conditioning can be quantified via the
spectral condition number

O'max(H)

Omin(H) '

k2(H) =

and random-matrix results predict the empirical spectral distribution of H"H for i.i.d. channel
gains, guiding the choice of a to stabilize inversion. [7]

Regularization that exploits structure beyond second-order moments includes Tikhonov terms
aligned with derivative operators in time or frequency to penalize roughness of the equalizer
response, and group-sparse penalties to encourage bandedness. A convex composite objective

T
min —||Aw — b||Z + A[|Gw|;
w 2

captures these preferences, where A encodes convolutional mixing and G enforces locality. First-
order proximal algorithms implement the corresponding soft-thresholding in fixed-point pipelines,
with step sizes set by Lipschitz constants of AHA.

For multiuser MIMO with M receive and K transmit dimensions, the post-equalization signal-
to-interference-plus-noise ratio for user k under linear precoding-combining can be written
as

W HF |2

2
Sjek IWRHE 12 + ol lwie 12

SINR¢ =

and optimization over {wy, f;} under per-antenna or sum-power constraints aligns with weighted-
MMSE iterations. The WMMSE fixed point satisfies stationarity conditions equivalent to KKT
conditions of a sum-rate maximization with log terms; practical implementations embed equaliza-
tion updates into this loop, amortizing matrix factorizations across users.
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Table 6. Nonlinear Equalization: Algorithms and Robust Variants

Method

Formulation / Objective

Notable Features

Decision-Feedback (DFE)

Sequence Estimation (MAP/Viterbi)

% = Q(Fy - BX)

arg minxﬁuy - Hx|?2 -
log p(x)

Cancels postcursor ISI; er-
ror propagation risk

Optimal sequence detec-
tion; trellis complexity

scales with memory
mingc [|g"H-c"||2+8||gl> Reduces channel memory;
enables lower-complexity

Channel Shortening

detection
Distributionally Robust minw maxacq E||X — Mitigates model mismatch
W(H + A)x||? via uncertainty-aware

penalties
r=y-HE[x],C, =R, , + Combines LMMSE filter-
Hdiag(Var[x])H" ing with posterior-based
symbol updates

Soft Interference Cancellation

4 Nonlinear Equalization: Decision Feedback, Sequence Estimation, and Robust-
ness

Decision feedback equalization reduces postcursor interference by subtracting previously de-
tected symbol contributions from the current decision statistic. In matrix form for a causal
feedforward F and strictly lower-triangular feedback B, the detector computes

x=Q(Fy-Bx),

where Q(-) denotes a slicer. Designing F and B to minimize mean-squared error under unbi-
asedness constraints yields closed-form solutions via Cholesky factorizations of H*RywH, and
Tomlinson-Harashima precoding implements a transmitter-side analog for pre-equalization.

Maximum a posteriori sequence estimation solves
N . 1 2
x =arg min —ly - Hx||; - log p(x),
xeXN 20},

where X is the constellation. For memoryless priors and linear convolution, the metric decomposes
into a trellis with branch metrics depending on tap vectors [8]. The Viterbi algorithm yields ML
sequence estimates for small memory, while the BCJR algorithm delivers symbol-wise posteriors
to feed iterative decoders. When channels are long or time varying, channel-shortening filters
condense memory to a target length, reducing trellis complexity. The channel-shortening design
solves

min |lg"H - c"I3 + Bligll5,

subject to ¢ being nonzero on a short support, where g is the prefilter and c the target impulse
response.

Robustness to model mismatch is critical when front-end impairments or calibration drift generate
structured errors. A distributionally robust formulation inflates the observation covariance within
an uncertainty set U:
min max E|x - W(H + A)x — Ww||§,
W Al

leading to regularized solutions where the penalty level depends on the radius of 2. In decision
feedback, error propagation is ameliorated by soft interference cancellation using posterior means
and variances rather than hard decisions, bridging toward iterative detection. Soft cancellation
computes

r =y — HE[x|prior], C, =Ryw + Hdiag(Var[x])HH,

and applies an LMMSE filter on r, updating symbol beliefs.
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5 lterative Equalization via Factor Graphs and Message Passing

A factor-graph representation separates the linear mixing constraint from symbol priors and
coding constraints. For the linear Gaussian channel, loopy belief propagation approximates
marginal posteriors through messages that are Gaussian in continuous variables and discrete on
constellation nodes [9]. Approximate message passing collapses these updates into a pair of vector
operations with Onsager correction terms; for complex-valued systems with i.i.d. sub-Gaussian
H, the algorithm writes

N
1
X = r;t(xt + HHzt) , z'=y-Hx'+ Nzt“ Zq;(-),
=

where 7, is a denoiser matched to the symbol prior and n}(-) denotes its divergence. State
evolution predicts the effective noise variance 'rf entering n; via a scalar recursion

K

T2, =0 +SE[IX —ne(X + . Z)], 6= v

with Z ~ CN(0, 1) and X distributed as the prior. This recursion guides damping choices and
stopping criteria, tying macroscopic performance to microscopic denoiser properties.

Orthogonal AMP variants replace independence assumptions with rotationally invariant H, yielding
stable convergence under broader ensembles through a decorrelated residual update. Vector
AMP and expectation propagation generalize to colored noise and correlated channels by tracking
covariance matrices or by whitening transformations. In doubly selective multicarrier systems,
message passing can operate on a banded interference graph where each tone node exchanges
beliefs with near neighbors; the sparsity pattern influences computational load and convergence
speed.

Turbo equalization integrates a soft-in/soft-out equalizer with a channel decoder through extrinsic
information exchange. Let LA denote a priori log-likelihood ratios from the decoder and LE the
extrinsic LLRs returned by the equalizer. A Gaussian approximation to symbol priors produces
equalizer means and variances that yield [10]

_2R{gr}
o o

LE LA,

where r is a matched-filter output, g an effective gain, and crgfF an effective noise variance
capturing residual interference after linear MMSE filtering with prior variance embedding. The
exchange proceeds until a halting criterion is reached or a latency budget expires. Analytical
tools based on extrinsic transfer curves predict tunnel openings that correlate with error floors,
assisting in the selection of equalizer bandwidth and decoder strength.

6 Equalization for Doubly Selective Channels and Delay-Doppler Waveforms

In scenarios where the channel varies within an OFDM symbol, the intercarrier interference
matrix [ acquires banded structure with bandwidth proportional to the normalized Doppler. Win-
dowed time-domain processing reduces leakage by tapering symbol edges, effectively convolving
subcarrier responses. A joint time-frequency equalizer solves

ol <12 o112
min Iy — FXI3 + o [DKI,

where D penalizes roughness across frequency or time indices. Efficient solutions rely on conjugate
gradients with circulant preconditioners derived from the diagonal of rr.

Delay-Doppler modulation maps symbols onto a lattice where the channel acts as a 2D circular
convolution. Equalization operates in the symplectic finite Fourier transform domain using

Z=F,YF!, X=F,SF
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and the mixing becomes vec(Z) = Spp vec(X) + vec(W) with Spp nearly block-circulant. A 2D
MMSE equalizer adopts [11]

~ -1
X = (SBpSo0 + al)  SHpvec(),

computed through iterative methods exploiting FFT-based block multiplications. When the scat-
tering function is sparse, a sparse Bayesian equalizer places a Laplacian or Bernoulli-Gaussian
prior on significant taps and uses coordinate descent or expectation-maximization to refine sup-
port and amplitudes. The associated denoiser in an AMP framework becomes a soft-thresholding
operator with parameters tied to Doppler and delay spreads.

Time-varying channels with partial reciprocity or pilot contamination motivate Kalman filtering
for tracking effective coefficients. For a state-space model h,.; = Ah, + q,, vy, = X,h, + w,,
the equalizer relies on filtered and smoothed estimates ﬁ,,|,, and covariances P,|, to construct
per-symbol MMSE filters with uncertainty inflation. Stability hinges on spectral radius p(A) and
on observability of (A, X,). In high mobility, augmented-state models include Doppler slopes, and
square-root implementations preserve numerical conditioning under fixed-point.

7 Massive and Cell-Free MIMO Equalization with Hardware Constraints

Massive MIMO aggregates many antennas to concentrate energy spatially, enabling simple
linear equalizers to achieve near-optimal performance in favorable propagation. With M > K,
matched filtering approximates the inverse of HYH due to channel hardening. The post-combining
interference behaves approximately Gaussian with variance predicted by large-system analysis. A
deterministic equivalent for user k under LMMSE combining reads [12]

2
Pkmy

ek POk + 0Lk

Yk

where py is the power allocation, my the effective channel gain, 6 ; cross terms, and &, captures
residual noise enhancement. These quantities satisfy fixed-point equations involving traces of
resolvent matrices of HH", allowing fast evaluation during resource allocation.

Hybrid beamforming constrains baseband dimension by analog networks with quantized phase
shifters. The effective channel becomes Hesr = WEFHFRF, and equalizer design must respect
constant-modulus constraints. Alternating optimization updates Frr, WgF, and baseband equaliz-
ers by solving

H H 2 2 2
min " lsc - WhgHertFegs Il + allFeslZ + B Was|Z,
Fes.Wes 7

subject to |[Fre]; ;| = 1/VNgr. Projected-gradient steps enforce constant-modulus constraints,
while baseband updates use closed-form ridge regression.

Low-resolution analog-to-digital converters reduce power but complicate equalization. A Buss-
gang linearization expresses the quantized observation as

z=Gy+e, E[ye']=0,
with G a gain matrix dependent on input covariance. Equalization proceeds with an effective linear
model using GH and augmented noise covariance Ree + GRwwG". Iterative refinement incorporates
symbol-dependent covariance updates, improving accuracy in moderate-SNR regimes. One-bit
conversion introduces severe nonlinearity; generalized approximate message passing tailored to
quantized likelihoods uses output-channel denoisers

Ji =E[YilZi. qil, Var[Y|Z;, qil,

with g; the quantizer bin and Z; the linear estimate.
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Cell-free architectures distribute many access points over a wide area, each with local combining
that is fused centrally through fronthaul links of limited capacity [13]. Equalization can be organized
as local LMMSE with compression followed by centralized fusion,

—1
§= (Z GHR: G,,,) D GhR.rm,

where G, and r,, are local effective channels and observations, and R, their covariances including
quantization and thermal noise. Rate-distortion arguments guide fronthaul compression levels,
and prewhitening at the edge simplifies fusion. Synchronization uncertainty across access points
is mitigated by phase-tracking loops embedded within the equalization pipeline.

8 Learning-Augmented Equalization and Algorithm Unrolling

Learning-augmented equalizers exploit data to tune algorithm parameters or to replace heuristic
steps with trainable modules while retaining structural priors. A canonical approach unrolls T
iterations of a proximal gradient method for a composite objective

T )
min [l — Hx]3 + A Z (7).
where ¢ is a sparsity- or constellation-aware penalty. The iteration
X" = Py, (xt — pueH (HX! - Y))

uses step sizes p; and proximal parameters 9, learned from data, with 5 implementing a paramet-
ric shrinkage or constellation-aware denoiser. Training employs synthetic channels or over-the-air
captures and backpropagates through the unrolled graph with truncated backprop-through-time
to control memory. [14]

Message-passing networks replace denoisers with small neural modules that map sufficient
statistics to posterior means and variances. Stability is improved by spectral normalization and
by tying parameters across iterations to limit overfitting. When channel state information is
uncertain, a joint network accepts both y and pilot-based A along with quality indicators to
modulate equalization aggressiveness. Data augmentation with phase and frequency offsets
improves robustness to synchronization errors.

A hybrid design treats front-end compensation as a differentiable layer. A phase-tracking module
updates a latent 8, via gradient steps on a surrogate loss that measures residual intercarrier
interference energy. The equalizer consumes the de-rotated observations and emits soft symbols.
End-to-end training balances bias from the compensation layer with variance in the equalizer and
decoder, and includes regularizers on phase increments to reflect oscillator physics.

Energy and latency constraints favor compact networks. Knowledge distillation transfers per-
formance from a large teacher—potentially a high-iteration unrolled solver—to a small student
by matching soft outputs and intermediate feature statistics [15]. Quantization-aware training
ensures compatibility with fixed-point accelerators, and structured pruning aligns with systolic
array tiling. The training objective includes a term penalizing memory traffic proxies, such as the
number of off-chip accesses, steering architectures toward local reuse.

9 Bayesian and Probabilistic Optimization of Feed-Forward and Decision-Feedback
Equalizers

A probabilistic perspective on equalizer tuning reframes the selection of filter lengths, step sizes,

regularization weights, and architectural toggles as a sequential experimental design problem on a

black-box objective that is expensive, noisy, and nonstationary. Instead of fixing hyperparameters
offline or relying solely on deterministic gradient-based adaptation derived from simplified models,
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the receiver allocates on-air or emulated trials to probe the response surface of performance
proxies such as post-equalization mutual information, generalized mutual information, error
vector magnitude, or decoder-aided block-error probability under realistic waveform, channel,
and hardware conditions. The outcome of each probe is inherently stochastic because it integrates
thermal noise, residual interference, channel estimation error, and possibly quantization artifacts.
A Bayesian optimizer compresses these observations into a posterior over the objective, balancing
exploration of uncertain hyperparameter regions against exploitation of promising settings, and
embracing constraints that arise from latency budgets, memory limits, and peak-to-average power
restrictions.

Let 8 € R? collect continuous knobs, including feed-forward and feedback tap weights projected
to a low-dimensional manifold, equalizer bandwidths, damping factors in iterative updates, and
tunables tied to phase-noise tracking, while discrete switches choose decision-feedback enable-
ment, slicer granularity, or partial-response targets. The performance metric £(8) is not directly
known and is observed as y = f() + £, where £ models measurement noise with variance o2(8)
that may depend on the number of symbols used to evaluate f and on instantaneous channel
variability. A Gaussian process prior with mean m(8) and kernel k (8, 8”) offers a flexible surrogate,
[16]
f()~GP(m(), k(,-)),

so that, given observations D; = {(6;, yi)}!
become

i_;» the posterior mean and variance at a candidate 6

-1
1e(8) = m(8) +ke(6)" (K + ™) (v —my),

62(6) = k(8.6) ~ky(8)" (K, +02) K (6),

where [K:];; = k(6;.6)), k:(8) = [k(6;,0)]!_,, and m; = [m(6;)]i_,. Acquisition rules such as
expected improvement prioritize evaluation points that jointly consider predicted gain and uncer-
tainty. For maximization with incumbent £*,

_ e 1 ey (He(O) = £ He(8) — 17
EL(6) = E[(F(8) = 7). ] = (ue(8) ff)q’( o:(6) ) f(e)d’( o:(6) )

where ® and ¢ denote the standard normal CDF and PDF. In resource-constrained receivers, the
acquisition must also encode the cost of each probe, which depends on the number of symbols,
pilots, and decoder iterations used to estimate f, motivating cost-aware variants that maximize
improvement per unit time or energy.

Equalizer hyperparameters influence performance through nonconvex couplings that are painful
to differentiate end-to-end under realistic impairments. Consider a decision-feedback structure
with feed-forward filter f € Ctr and strictly causal feedback filter b € Cts, together with a linear
MMSE prewhitener parameterized by a ridge coefficient a > 0. An information-centric metric that
avoids constellation-specific discontinuities is the mismatched achievable rate via the generalized
mutual information,

q(Y|X;6)
2xex(x')q(Y[x';6)
with g the post-equalization Gaussian surrogate likelihood and & an assumed prior on symbols.
The expectation is taken over true channel, noise, and residual interference [17]. While GMI
correlates with decoder performance, evaluating it at scale still incurs nontrivial cost, reinforcing
the role of surrogates. A practical surrogate is the posterior mean of symbol reliability aggregated
over tones and time,

GMI(6) = E |log

J(6) =

>

Z |g,,(9)r,,(6)|
n=1 effn(e)
with g,(0) an effective gain and agﬁn(e) the residual interference-plus-noise variance implied by

the chosen (f, b, a). Bayesian optimization treats J(8) as the objective or as a correlated auxiliary
to accelerate the search for 8 that improves GMI.
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Decision feedback introduces error propagation that depends on symbol reliability, burst structure
of interference, and slicer operating region. A probabilistic optimizer can temper aggressive
feedback by choosing L, and feedback scaling to minimize a risk functional that penalizes tails of
the reliability distribution. A coherent formulation introduces a conditional value-at-risk objective
on per-symbol log-likelihood ratios {L,(8)},

CVaR4 (6) = inf { v }; El(c - Ln<e>>+1},

so that @ is tuned to improve the worst g-fraction of symbols, which frequently dominate block
error outcomes after decoding. Since direct optimization is infeasible, the Bayesian surrogate
learns the mapping 8 — CVaRg(0) from batched reliability samples and proposes trials where the
acquisition reflects tail-risk reduction.

In time-varying channels, the objective drifts with Doppler, oscillator phase noise, and interference
geometry. A stationary kernel can underfit; nonstationary kernels address this by incorporating
channel descriptors ¢ such as delay spread, Doppler spread, and phase-noise variance into the
input, yielding an augmented k((6, ), (6", ¢’)) that learns how optimal 8 adapts across environ-
ments. Alternatively, a forgetting factor implements streaming posterior updates with exponential
decay on old data, which is equivalent to inflating observation noise for stale points. The optimizer
thus changes equalizer aggressiveness over time, e.g., shrinking feedback when mobility raises
uncertainty in pre-cursor estimates or when low-resolution quantization amplifies nonlinearity.
[18]

Hardware constraints embed directly into the search as inequality and budget constraints. Safe
Bayesian optimization recognizes an unknown feasible set ¥ = {6 : ¢;(0) <0, = 1,...,J},
where constraints c¢; reflect decoder-latency budgets, maximum allowed memory traffic, and
fixed-point overflow margins. Each ¢; is modeled with a GP and queried jointly with the objective.
The acquisition selects candidates that satisfy feasibility with high posterior probability while
maximizing predicted improvement. For example, a latency model grounded in measured cycle
counts as a function of tap lengths, FFT sizes, and unrolling depth yields a constraint

clat(6) = E[T(8)] — Tmax-

with Thax a hard deadline. The constrained optimizer explores only those 6 for which P{c|;:(8) < 0}
exceeds a safety threshold.

When the parameter dimension is large, structural priors curb sample complexity. Feed-forward
and feedback taps lie near low-dimensional subspaces determined by dominant channel modes;
a linear dictionary U with r < L + L, columns parameterizes (f, b) = Un. The optimizer searches
over n € R" while U is either fixed from prior analysis or adapted slowly using principal subspace
estimates of the channel convolution operator. Additive kernels exploit near-separability between
groups of parameters,

G
k(0,0)) = ) kg(65.6)),
g=1

yielding decomposable posteriors and acquisitions that scale with G rather than d. For mixed
discrete-continuous designs, a Hamming-distance kernel covers combinatorial toggles such as
enabling Tomlinson-Harashima precoding, while continuous kernels manage step sizes and ridge
levels. [19]

To tame heteroscedasticity from variable-length probes, multi-fidelity modeling binds fast but
biased metrics to slow but accurate ones. Let f(8) be a low-cost proxy based on short frames
or on decoder-free reliability summaries, and f; (8) the high-fidelity target measured with long
frames and full decoding. A coregionalized GP captures cross-covariances,

o(6) koo(6,9") k01(6,0")
[ﬁ(@} > W('“(e)’ [km(e, &) kn (@, e’)])’
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so that frequent cheap queries of f guide sparse expensive queries of f;. Acquisition functions
such as the multi-fidelity knowledge gradient select (6, fidelity) pairs that maximize expected
value of information per unit cost, accelerating convergence under tight energy budgets.

Integration with iterative detection-decoding loops requires that the optimizer respect extrinsic-
information dynamics. A coarse but effective bridge leverages state-evolution predictors of
equalizer outputs to approximate how hyperparameters migrate the operating point on decoder
transfer curves [20]. If 72(6) denotes the effective noise variance at the equalizer output predicted
by large-system analysis, and Ty is a decoder transfer function mapping input variance to output
variance proxy, fixed-point relations

Tr2+1 (6) = 03« +W(6, th)’ Uf+1 = TdeC(Tt2+1 (6))

allow the optimizer to target 8 that drives the pair (72, v%) toward desirable regions without
performing full decoding at every probe. The Bayesian surrogate can be trained to emulate ¥ (9, -)
from limited pilot runs, trading exactness for speed while maintaining fidelity in the regime that
determines error floors.

Probabilistic design extends beyond choosing scalar hyperparameters to shaping the feedback
topology itself. Partial decision feedback limits propagation by selecting a subset of past decisions
to subtract, guided by a posterior over their reliabilities. Represent the inclusion mask as s €
{0, 1}t¢ with a prior that favors sparsity. The performance surface f(n, s) is combinatorial; a
Thompson-sampling strategy samples f from the posterior surrogate and greedily constructs s by
conditional maximization over entries, akin to Bayesian matching pursuit. Under block-fading,
stability improves when the mask is frozen within a coherence block and updated only when
posterior uncertainty exceeds a threshold that signals a likely topology change in interference
paths.

In strongly hardware-impaired receivers, the observation model is quantized or phase-noisy,
and gradients through the nonlinearity are unreliable. Bayesian optimization sidesteps this
by learning effective hyperparameters for Bussgang-based linearizations and likelihood-aware
message passing without differentiating through hard quantizers [21]. A robust objective that
maintains performance across anticipated impairment distributions emerges by integrating the
surrogate over a prior on impairment parameters ¢,

_ 1S
70) = [ F(@:6)p(@) dp = 5 Y F(6ig0).
s=1

with {¢s} drawn from calibration-informed priors over phase-noise linewidths, gain/offset mis-
match, and ADC thresholds. The posterior and acquisition are then built on 7, producing hyperpa-
rameters that generalize across day-to-day drift.

Co-design with beamforming exposes yet another layer of coupled decisions. Hybrid ana-
log-digital front ends restrict the baseband dimension, shrinking equalizer degrees of freedom. A
bilevel scheme looks attractive: the outer loop uses Bayesian optimization to choose analog beam
codebook entries and baseband dimensionality, while the inner loop tunes equalizer parameters
conditional on the chosen front end. Direct bilevel search is expensive; instead, a joint surrogate
takes as input both beam indices and equalizer knobs, with a kernel that respects invariances
such as global phase and permuted RF chains. Acquisition in this joint domain is tempered by a
constraint on reconfiguration overhead, encoded as a cost term that reflects the transient penalty
of retuning phase shifters and reinitializing channel estimates after beam changes.

Bandwidth- and latency-aware acquisition policies are vital for embedded deployments. If a probe
at 8 consumes time 7(6) and energy E(6), the utility of an evaluation is scaled accordingly [22]. A
normalized expected improvement,

El(6)

NEI(9) = at(0) + bE(O)
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with design weights a, b > 0, biases the search toward evaluations that produce useful information
at low operational cost. When real-time constraints are strict, batched Bayesian optimization
dispatches B candidates in parallel, for example across subbands or user groups whose trials do
not interfere, using fantasized posteriors to account for pending evaluations. Batched policies
must incorporate interference coupling so that simultaneous probes do not corrupt each other’s
metrics; a conservative approach enforces spatial or spectral separation based on current channel
covariance estimates.

A full-stack receiver can expose not only raw performance outcomes but also intermediate
diagnostics as auxiliary observations that sharpen the surrogate. These include distributions of
slicer distances, empirical residual spectra at equalizer outputs, and decoder syndrome weights.
Multi-output Gaussian processes then model a vector-valued function whose components co-
vary, enabling the acquisition to prioritize 8 that reduces uncertainty in the most informative
diagnostic, which in turn reduces uncertainty in the target. If the diagnostics are high-dimensional,
a random-feature representation or a learned linear embedding compresses them into a few
summary statistics that preserve sensitivity to deleterious phenomena such as intercarrier leakage
or phase-noise induced common-phase errors. [23]

Reliability under out-of-distribution shifts benefits from priors that encode known invariances
and smoothness. Kernels built from physically meaningful distances, such as geodesic distances
between filters modulo linear-phase and scale, enforce that equivalent equalizers are nearby in
input space. For feed-forward/feedback pairs (f, b) with unavoidable scaling ambiguities due to
slicer normalization, define equivalence classes by normalizing ||f||> = 1 and embedding into a
sphere, then use a heat kernel on the sphere to respect rotational symmetries. This improves
sample efficiency and prevents the optimizer from wasting probes on redundant parameterizations
that differ by trivial symmetries.

Although the Bayesian outer loop is non-intrusive, it must harmonize with inner-loop adaptive
algorithms such as stochastic gradient updates on tap weights. A timescale separation ensures
that the inner loop nearly equilibrates before the outer loop perturbs hyperparameters. This is
captured by a two-timescale stochastic approximation model where the hyperparameters evolve
according to

Ot41 = 6t + vt uy, Ye < s,

with 7, the inner-loop step size and u; chosen by the acquisition. Stability requires }; y; = o
and Y, ytz < oo, while 5, decreases more slowly, reflecting faster convergence of tap adaptation
relative to hyperparameter exploration [24]. In practice, this implies updating 8 once per several
coherence intervals, and freezing it within intervals to avoid confounding measurements with
transient adaptation dynamics.

When training data from emulation or lab captures is available, a warm-start surrogate accelerates
field convergence. Offline, one populates Dy with evaluations over synthetic channels whose
statistics bracket expected deployments, optionally augmented by importance weighting toward
regions of higher operational likelihood. The online phase then refines the surrogate using over-
the-air data, with a robustification layer that downweights points whose residuals exceed what
the kernel predicts under its noise model, a sign of distribution shift. Mathematically, a Student-¢
likelihood replaces the Gaussian noise model to accommodate occasional heavy-tailed deviations,

(y —u(e»?)(“*””

p(y|6) o« (1 + S o%(9)

with degrees of freedom v tuned to observed tail behavior.

Scalable implementation relies on sparse or low-rank kernel approximations. Inducing-point
methods reduce cubic complexity O(t3) to O(tm?) with m pseudo-inputs, while random Fourier
features linearize the surrogate in an expanded feature space. Both integrate naturally with
batched parallelism on accelerators and map to fixed-point arithmetic by pre-quantizing kernel
features. Numerical stability hinges on regularizing Gram matrices and monitoring condition
numbers; jitter terms added to the diagonal prevent ill-conditioning when observations cluster [25].
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Acquisition optimization itself is nontrivial; gradient-based searches over 6 require differentiable
kernels and cost models, while gradient-free global search strategies such as covariance matrix
adaptation or direct space exploration provide robustness when 8 contains discrete elements.

Practical objective choices determine whether the optimizer prioritizes throughput, reliability, or
energy. For instance, a decoder-in-the-loop frame-error proxy with dynamic framing time 7(6)
calls for a normalized objective 7(8) = —FER(8)/T (9) that captures errors avoided per unit time.
Alternatively, a constrained throughput maximization

mgx SE(9) s.t. BLER(O) <e, T(6) < Tmax

is operated via a Lagrangian that the surrogate learns implicitly. The optimizer then tunes feed-
forward bandwidth and feedback aggressiveness to trade slight increases in residual interference
against reductions in iteration count or frame duration that unlock higher spectral efficiency at
fixed block-error targets.

Within this broad landscape, specific studies illustrate the feasibility of probabilistic search for joint
feed-forward and decision-feedback tuning. Methods that select hyperparameters by maximizing
eye-related metrics like eye height or eye opening are convenient when the receiver exposes
intuitive oscilloscopic diagnostics and when objective evaluation without the decoder is necessary
to tighten the exploration budget. A Bayesian approach that places a surrogate over such metrics
and queries them under uncertainty exemplifies the general template; for instance, Dikhaminjia
et al (2021) [26]. report a probabilistic strategy that leverages an eye-height objective to drive
joint equalizer configuration using sequential optimization, providing one concrete instantiation
among many compatible designs.

10 Optimization Methods and Numerical Stability

Equalization algorithms often reduce to solving structured linear systems or composite convex
programs. Preconditioned conjugate gradients solve normal equations (H"H + al)x = H"y with a
circulant preconditioner C approximating H*H. The iteration uses

ro=b-Axo, 20=C'ro, Ppo= 2o,

and updates

rHz
t “t
ar = — s Xesl = Xe + 0Pr,  Few1 = Fr — arApy,
p; Ap:
H
r z
-1 414141
2t =C 't Br= H s Pts1 = Zeg1 + BePe.
Z;
t

FFT-based multiplications reduce per-iteration cost to quasi-linear in block length, and residual-
based stopping ensures numerical robustness with fixed iteration caps for latency predictability.

Alternating direction method of multipliers handles constraints such as constant-modulus, sparsity
in transform domains, or bounded peak-to-average power. For

mxin f(x) + g(Kx),

the scaled ADMM iterations

t+1

x*! =argmin £(x) + g||Kx—zt +ul|3,

t+1 _ St+1

z'*! = prox,, (th” + ut), u*! = uf + Kx z

decompose computation into a structured least-squares subproblem and a simple proximal map
[27]. Parameter p is tuned via residual balancing rules, and over-relaxation improves convergence
on ill-conditioned problems.
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Fixed-point deployment requires dynamic range analysis. Given accumulator word length B and
unit roundoff u = 278, forward error bounds for a triangular solve with condition number « yield
relative error scaling approximately as

X - xll2

<kcu+0(u?),
112

for constant ¢ determined by algorithmic details. Mixed-precision approaches perform multiplica-
tions in low precision and accumulations in higher precision, preserving accuracy while saving
energy. Stochastic rounding reduces bias in iterative solvers and stabilizes convergence in deep
unrolling.

11 Complexity, Memory Traffic, and Energy Considerations

Throughput and energy per bit depend not only on arithmetic counts but also on memory
traffic. For block length N and banded interference of half-bandwidth B, a banded conjugate-
gradient equalizer has per-iteration complexity O(N B) and memory proportional to O(N), with
a constant sensitive to caching. In massive MIMO, factorization-based linear solvers rely on
QR or Cholesky updates whose complexity scales with O(MK?) or O(K?) depending on reuse
[28]. Iterative solvers amortize cost across coherence intervals by warm-starting from previous
solutions, reducing required iterations by a factor that correlates with channel temporal correlation
p.

Energy models parameterize cost by picojoules per operation and per byte moved off-chip. For
a given technology node, off-chip accesses may consume orders of magnitude more energy
than arithmetic. Equalizers designed to maximize data locality, such as polyphase filters and
blocked FFTs, lower energy by reusing intermediate results on-chip. Pipelining and systolic array
scheduling ensure high utilization under strict latency constraints, and stream buffers exploit
alignment between symbol boundaries and processing tiles.

Latency constraints in control-plane signaling motivate bounded-iteration algorithms with pre-
dictable worst-case execution. Techniques include early termination on reliable symbols, where
symbols exceeding a reliability threshold bypass further iterations, and partial updates that focus
computational effort on subcarriers or users with poor conditioning. In hybrid beamforming,
precomputation of analog-domain transforms reduces online cost, while adaptive baseband
dimensioning tailors digital equalization effort to instantaneous channel rank. [29]

12 Simulation Methodology and Performance Characterization

Performance evaluation proceeds by generating channels according to specified scattering func-
tions, sampling Doppler processes consistent with mobility and oscillator behavior, and adding
thermal noise at prescribed SNRs. For single-carrier frequency-selective channels, taps follow
complex Gaussian distributions with exponential power delay profiles. For OFDM, phase noise
follows a discrete-time Wiener process with linewidths that map to normalized phase variance
across the symbol. Delay-Doppler channels adopt sparse support patterns with clusters of
reflectors and micro-Doppler components.

Equalizer configurations include linear MMSE with banded interference models, decision feedback
with soft cancellation, turbo equalization with iterative decoding, AMP-based detectors with
matched denoisers, and unrolled proximal networks trained on synthetic datasets. Metrics include
block error rate, bit error rate, and achievable rates under Gaussian approximation of residual
interference. Complexity is tracked via operation counts, iteration counts, and memory traffic
proxies, while latency is measured per frame based on cycle-accurate models.

Representative outcomes reveal operating regions where each equalizer class is advantageous
[30]. Linear MMSE performs well when interference is moderate and channel estimates are
accurate. Decision feedback gains manifest in channels with dominant postcursor energy and
moderate error propagation risk. Turbo equalization closes much of the gap to optimal detection
when coding is strong and latency budgets permit multiple exchanges. AMP-based detectors
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excel in large, moderately loaded systems with near-i.i.d. mixing, while unrolled methods provide
improved convergence in ill-conditioned regimes. Under one-bit quantization, likelihood-aware
message passing significantly improves error floors relative to linearization-based approaches.

13 Design Guidelines and Open Technical Questions

Several practical design guidelines emerge from the mathematical analysis and empirical charac-
terization of adaptive equalizers in contemporary communication systems. Conditioning analysis,
often expressed through singular value spectra or random-matrix equivalents, provides crucial
insight into the stability and convergence behavior of iterative solvers [31]. When the effective
channel matrix exhibits ill-conditioning, small perturbations in noise or estimation errors can
produce disproportionately large fluctuations in the equalized output. Regularization thus be-
comes essential to mitigate noise amplification, and the optimal level can be inferred from the
distribution of singular values or their large-system approximations. Similarly, understanding the
condition number dynamics informs the appropriate number of iterations in conjugate-gradient
or message-passing algorithms, balancing convergence accuracy against computational latency.
In large-scale systems, random-matrix theory offers asymptotically accurate surrogates for these
conditioning metrics, allowing regularization schedules to be set adaptively without exhaustive
per-channel computation.

In architectures employing hybrid analog-digital beamforming, where the analog front end per-
forms a dimensionality reduction before digital baseband processing, the equalizer must operate
in a compressed domain. This compression can obscure channel features and introduce ambi-
guities if the analog beam patterns do not adequately span the relevant signal subspaces. To
counteract this, the use of auxiliary pilot symbols aligned with analog beams proves beneficial.
These pilots illuminate the effective channel within the reduced-dimensional space, improving
identifiability and enhancing the conditioning of subsequent equalization [32]. Careful design of
pilot allocation—accounting for analog beam directions, gain variations, and phase quantization
constraints—ensures that the hybrid equalizer can recover sufficient information to compensate
for analog-domain distortions without incurring excessive pilot overhead.

In systems characterized by delay-Doppler spreading, such as those employing orthogonal
time-frequency space (OTFS) modulation, channel responses become sparse in a joint de-
lay-Doppler representation. Exploiting this sparsity through structured priors or regulariza-
tion promotes resilience against rapid time variation and frequency selectivity. Bayesian or
compressed-sensing-inspired equalizers that enforce sparsity in the delay-Doppler domain can
isolate dominant propagation paths and suppress diffuse interference, resulting in robust perfor-
mance even under high mobility. These structured models naturally lend themselves to online
updates through iterative thresholding or message-passing algorithms that adaptively track the
sparse support as the channel evolves.

Despite these advances, several open research directions remain. One challenge lies in develop-
ing unified channel and impairment models that simultaneously capture oscillator phase noise,
quantization effects, and nonlinear power amplifier memory, all within a tractable inferential
framework. Each of these impairments introduces distinct forms of nonlinearity and correlation,
and their combined effect complicates both analysis and algorithm design [33]. Achieving a
model that is sufficiently expressive yet still admits low-complexity inference would enable more
accurate equalization in practical transceivers operating under stringent power and hardware
constraints. Another promising direction involves adaptive algorithms that dynamically adjust
their iteration depth and operating mode based on instantaneous quality metrics, such as es-
timated post-equalization signal-to-interference-plus-noise ratio (SINR). Such adaptive control
could conserve computational resources during favorable channel conditions while allocating
more iterations when interference or distortion intensifies, achieving graceful complexity scaling
with environmental difficulty.

The advent of learning-augmented equalizers introduces further possibilities for optimization
beyond traditional arithmetic efficiency. Hardware-aware training that explicitly minimizes mem-
ory access and data movement—often the dominant energy consumers in modern digital signal
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processors—can yield substantial power savings. Incorporating memory-traffic cost functions into
training objectives aligns algorithmic learning with hardware realities, promoting implementations
that are not only accurate but also energy proportional. This co-design philosophy bridges the
gap between theoretical performance metrics and practical deployment constraints, enabling
sustainable operation in battery-powered or thermally limited platforms.

A deeper theoretical and architectural question concerns the interplay between equalization
and medium-access control in emerging cell-free and distributed MIMO systems [34]. In these
networks, coordination among distributed access points alters the interference landscape, while
fronthaul compression and scheduling decisions affect the structure and dimensionality of the
received signals. Equalization strategies must therefore be aware of such upper-layer dynamics,
potentially adapting their model assumptions and prior distributions to reflect varying degrees
of cooperation, latency, and data fidelity. Joint design of equalization and resource allocation
could exploit these dependencies, leading to more coherent multiuser interference mitigation
and improved spectral efficiency across distributed topologies.

From an optimization standpoint, the convergence behavior of unrolled or learned iterative equal-
izers remains an area of active inquiry. While these architectures achieve impressive empirical
performance by mapping iterative inference steps onto differentiable network layers, their the-
oretical properties under realistic channel ensembles are not yet well understood. Establishing
global convergence guarantees—or at least identifying conditions under which convergence to
desirable fixed points is ensured—would significantly strengthen their reliability. Moreover, the
development of state-evolution-like analytical tools for correlated, rotationally invariant channel
models would provide predictive performance benchmarks akin to those available for idealized
i.i.d. scenarios. Such predictors could guide hyperparameter tuning, regularization schedules, and
iteration control with reduced reliance on empirical validation. [35]

14 Conclusion
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