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Abstract

Endogeneity presents one of the most persistent challenges in empirical econometric analysis,
particularly when researchers attempt to establish causal relationships from observational data
in panel settings. This paper provides a comprehensive comparative analysis of instrumental
variable approaches specifically designed to address endogeneity issues within linear panel
data models. We examine the theoretical foundations and practical implementation of fixed
effects instrumental variables, random effects instrumental variables, difference-in-differences
instrumental variables, and system generalized method of moments estimators. Through detailed
mathematical exposition, we demonstrate how each approach handles different sources of
endogeneity including omitted variable bias, simultaneity, and measurement error. The analysis
reveals that the choice of instrumental variable strategy critically depends on the underlying
data generating process, the nature of unobserved heterogeneity, and the availability of valid
instruments. Our findings indicate that system GMM estimators perform particularly well when
lagged values serve as valid instruments, while fixed effects IV approaches excel in controlling for
time-invariant unobserved heterogeneity. The paper contributes to the literature by establishing
a unified framework for comparing these methodologies and providing practical guidance for
empirical researchers facing endogeneity concerns in panel data analysis.

1 Introduction

The problem of endogeneity in econometric analysis represents a fundamental challenge that
undermines the ability to draw causal inferences from observational data [1]. When explanatory
variables are correlated with the error term, ordinary least squares estimation yields biased
and inconsistent parameter estimates, leading to potentially misleading conclusions about the
relationships under investigation. This issue becomes particularly complex in panel data settings,
where researchers must simultaneously address multiple sources of endogeneity while accounting
for the longitudinal structure of the data.

Panel data models offer unique advantages in addressing endogeneity concerns through their abil-
ity to control for unobserved heterogeneity using within-individual variation over time. However,
the presence of endogenous regressors requires sophisticated instrumental variable techniques
that can exploit the panel structure while maintaining the identifying assumptions necessary for
consistent estimation. The choice among available instrumental variable approaches depends
critically on the nature of the endogeneity problem, the characteristics of the data generating
process, and the availability of valid instruments. [2]

The theoretical foundations of instrumental variable estimation in panel data models build upon
the classical two-stage least squares framework while incorporating the additional complexity
introduced by the panel structure. Consider a general linear panel data model of the form
Yie = a + Bxis +yzit + ui + €, Where y;; represents the dependent variable for individual 7
at time t, x;; denotes potentially endogenous explanatory variables, z;; represents exogenous



control variables, u; captures time-invariant unobserved heterogeneity, and ¢;; represents the
idiosyncratic error term. The endogeneity problem arises when E|[x;:€;¢] # 0 or E[x;:ui] # 0,
violating the orthogonality conditions required for consistent estimation.

The development of instrumental variable techniques for panel data has evolved significantly over
the past several decades, driven by the recognition that different sources of endogeneity require
distinct methodological approaches. Fixed effects instrumental variables methods focus primarily
on eliminating time-invariant unobserved heterogeneity while using external instruments to
address remaining endogeneity concerns. Random effects instrumental variables approaches
maintain efficiency gains by modeling the unobserved heterogeneity as random while requiring
stronger identifying assumptions. Difference-in-differences instrumental variables combine the
identification power of quasi-experimental variation with instrumental variable techniques to
address both selection bias and endogeneity simultaneously. [3]

More recently, generalized method of moments estimators have gained prominence in panel data
applications due to their ability to use internal instruments derived from the lagged structure of the
data. These approaches exploit the orthogonality conditions between lagged values of variables
and current period innovations, providing a systematic framework for addressing endogeneity
without relying on external instruments. The system GMM estimator, in particular, combines
moment conditions from both first-differenced and levels equations to improve efficiency and
address weak instrument problems.

The comparative analysis of these instrumental variable approaches requires careful consideration
of their underlying assumptions, identification strategies, and performance characteristics under
different data generating processes. Each method involves specific trade-offs between robustness,
efficiency, and the strength of identifying assumptions [4]. Understanding these trade-offs is
essential for empirical researchers seeking to address endogeneity concerns while maintaining
the credibility of their causal inferences.

This paper contributes to the existing literature by providing a unified mathematical framework for
comparing instrumental variable approaches in panel data settings. We develop a comprehensive
theoretical analysis that illuminates the conditions under which each method is most appropriate
and examine the relative performance of these estimators under various scenarios. The analysis
focuses particularly on the mathematical foundations underlying each approach, demonstrating
how different identifying assumptions translate into specific moment conditions and estimation
procedures.

2 Instrumental variable estimation in panel data models

Consider the general linear dynamic panel data model: [5]

’ ’
Yit = QYit1+ B Xit + ¥ Zj + pi + €1

where y;; represents the dependent variable, y;;_1 is the lagged dependent variable, x;; isa K x 1
vector of potentially endogenous explanatory variables, z;; is an L x 1 vector of predetermined or
exogenous variables, u; denotes individual-specific time-invariant effects, and ¢;; represents the
idiosyncratic error term.

The endogeneity problem manifests through several potential channels. First, simultaneity bias
occurs when E[x;:¢;¢] # 0O, indicating that current values of the explanatory variables are cor-
related with current innovations in the dependent variable. Second, unobserved heterogeneity
bias arises when E[x;:u;i] # 0, suggesting that the explanatory variables are correlated with
time-invariant unobserved characteristics. Third, dynamic endogeneity emerges in models with
lagged dependent variables, where E|[y;;_1€;;] # 0 due to the mechanical correlation between
lagged outcomes and individual effects.

The instrumental variable approach addresses these endogeneity concerns by identifying a set of
instruments w;; that satisfy two fundamental conditions: relevance and exogeneity. The relevance
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condition requires that the instruments are sufficiently correlated with the endogenous variables,
formally expressed as E[w;:x/,] # 0. The exogeneity condition demands that the instruments are
uncorrelated with the error components, requiring both E[w;:e;;] = 0 and E[w;:u;] = 0in the
context of panel data models.

The mathematical framework for instrumental variable estimation in panel data builds upon the
generalized method of moments approach. Define the moment conditions as E[g;;(8)] = 0, where
git(0) represents the vector of moment conditions and 6 = (a, 8’,y’)’ denotes the parameter
vector of interest. For a given set of instruments w;;, the moment conditions take the form:

Ewt(yit — ayit—1 = B'xit =¥ zie —pj)] =0

The challenge in panel data settings lies in appropriately handling the individual effects y; while
maintaining the validity of the moment conditions. Different instrumental variable approaches
adopt distinct strategies for addressing this challenge, leading to varying sets of identifying
assumptions and moment conditions.

The matrix representation of the instrumental variable estimator provides insight into the mathe-
matical structure underlying different approaches [6]. Let Y denote the NT x 1 stacked vector of
dependent variables, X represent the NT x (K + L + 1) matrix of explanatory variables including
lagged dependent variables, and W denote the NT x J matrix of instruments, where J represents
the total number of instruments. The GMM estimator is defined as:

Oomm = arg mgin gn(8)'Qy gn(6)

where gy (8) = N7! Z,’L ZL wit(yit — X/,6 — p;) represents the sample moment vector and Qp
denotes a consistent estimator of the variance-covariance matrix of the moment conditions.

The choice of weighting matrix Qu plays a crucial role in determining the efficiency properties of
the GMM estimator. The optimal weighting matrix is given by Q* = E|[g;.g/,], which yields the
most efficient GMM estimator within the class of estimators based on the same set of moment
conditions. In practice, this optimal weighting matrix must be estimated consistently, typically
through a two-step procedure that first obtains preliminary estimates using an identity weighting
matrix.

The asymptotic properties of instrumental variable estimators in panel data models depend
critically on the assumptions regarding the asymptotic behavior of the cross-sectional and time
dimensions [7]. Under standard regularity conditions and assuming that both N and T approach
infinity, the GMM estimator satisfies:

VNT (Bomm - 60) > N(0,(G'Q~'G)™)

where G = E[%] represents the gradient matrix and 6, denotes the true parameter value.
This asymptotic normality result provides the foundation for statistical inference and hypothesis
testing in instrumental variable panel data models.

The identification of parameters in instrumental variable panel data models requires careful
consideration of the rank conditions and the strength of the instruments. The order condition
requires that the number of instruments is at least as large as the number of endogenous variables,
while the rank condition demands that the instrument matrix has full column rank. However,
these necessary conditions are not sufficient to ensure reliable estimation, as weak instruments
can lead to substantial finite-sample bias and poor asymptotic approximations. [8]

The problem of weak instruments becomes particularly acute in panel data settings where the
time dimension may be limited, reducing the number of available lagged values that can serve
as instruments. The strength of instruments can be assessed through various diagnostic tests,
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including the first-stage F-statistic and the Cragg-Donald weak identification test. These tests
provide guidance on whether the instruments are sufficiently strong to support reliable causal
inference.

3 Fixed Effects Instrumental Variables

The fixed effects instrumental variables approach represents one of the most widely used methods
for addressing endogeneity in panel data models while simultaneously controlling for time-
invariant unobserved heterogeneity. This method combines the within-group transformation of
fixed effects estimation with instrumental variable techniques to eliminate individual-specific
effects and address remaining endogeneity concerns through external instruments.

The mathematical foundation of the fixed effects IV estimator begins with the standard panel
data model y;; = B’xit + v’ zi+ + i + €ir, where the primary concern is that E[ x;;€;:] # 0 even
after controlling for individual fixed effects y;. The within-group transformation eliminates the
individual effects by subtracting individual-specific means from each variable: [9]

Vit = Yie = ¥i = B (Xie = %) + ¥ (2ie = 2j) + (€ — &)

where y; = 77! ZL vit represents the individual-specific time average of the dependent variable,
and similar notation applies to other variables. This transformation effectively removes the
individual fixed effects u; from the model, but endogeneity concerns may persist if the time-
varying component of the explanatory variables remains correlated with the transformed error
term.

The fixed effects IV estimator addresses this remaining endogeneity by employing instruments
w;: that satisfy the transformed orthogonality conditions. Let w;; = w;; — w; represent the within-
transformed instruments. The key identifying assumptions for the fixed effects IV estimator
are: first, instrument relevance in the within dimension, requiring E[w;:%/,] # 0; and second,
instrument exogeneity with respect to the idiosyncratic error term, demanding E[w;:€;:] = 0.

The mathematical structure of the fixed effects IV estimator can be expressed using matrix
notation. Let M = I — %LTL’T denote the within-group transformation matrix, where I is the
T x T identity matrix and (r represents a T x 1 vector of ones. For individual /, the transformed
data can be written as:

Vi=MY, Xi=MXi W =MW,

The fixed effects IV estimator is then obtained through two-stage least squares applied to the
transformed data:

€

M=z

N N N N N
Brery = (Z X;’W(Z W/ W)™ Z W/ X)) Z)?,-'W/( HON Z W!Y;
p p p p i e

This expression can be simplified by recognizing that the fixed effects IV estimator is equivalent
to applying instrumental variables to the pooled within-transformed data [10]. The estimator can
be written more compactly as:

Brerv = (X'PyX) 7' X' Py ¥

where Py, = W(W’'W)~ "W’ represents the projection matrix onto the space spanned by the
within-transformed instruments.

The asymptotic properties of the fixed effects IV estimator depend on the assumptions regarding
the behavior of the cross-sectional and time dimensions. Under standard regularity conditions,
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including the assumption that instruments are strong in the within dimension, the estimator
satisfies:

N
a d . _ o) oo
VNT (Beerv = o) = N(0,02plimpy r oo (N7 Y X/ Py X))
i=1

where 2 = E[él?t] represents the variance of the transformed idiosyncratic error term.

The efficiency of the fixed effects IV estimator relative to other instrumental variable approaches
depends on several factors. When individual effects are truly fixed and the instruments are
strong in the within dimension, the FEIV estimator typically provides consistent and efficient
estimates [11]. However, the within transformation can exacerbate weak instrument problems if
the instruments exhibit limited time-series variation or if their correlation with the endogenous
variables is primarily driven by cross-sectional rather than time-series variation.

The choice of instruments in fixed effects IV applications requires careful consideration of the
identifying variation remaining after the within transformation. External instruments such as
policy changes, weather shocks, or other exogenous variables that vary over time and across
individuals can provide powerful identification. However, researchers must ensure that these
instruments are not only relevant in the within dimension but also satisfy the strict exogeneity
requirement with respect to the idiosyncratic error term.

One important consideration in fixed effects IV estimation is the potential loss of information
due to the within transformation [12]. Variables that are perfectly correlated with individual
fixed effects are eliminated from the analysis, and slowly-moving variables may suffer from
reduced identifying variation. This issue becomes particularly problematic when the instruments
themselves exhibit limited within-individual variation over time.

The diagnostic testing for fixed effects IV models involves several key components. First-stage
F-statistics can be computed using the within-transformed data to assess instrument strength
in the relevant dimension. The Kleibergen-Paap weak identification test provides more robust
assessments of instrument strength that account for potential heteroskedasticity and serial
correlation in the error terms. Overidentification tests, such as the Sargan-Hansen test, can be
employed to examine whether the instruments satisfy the required orthogonality conditions. [13]

The fixed effects IV approach also faces challenges when dealing with dynamic panel data models
that include lagged dependent variables. In such cases, the lagged dependent variable becomes
mechanically correlated with the transformed error term, creating an additional source of endo-
geneity that cannot be addressed through the within transformation alone. This limitation has
motivated the development of alternative approaches, such as system GMM estimators, that can
better handle dynamic specifications.

4 Random Effects Instrumental Variables

The random effects instrumental variables approach provides an alternative framework for ad-
dressing endogeneity in panel data models while maintaining efficiency gains through the modeling
of unobserved heterogeneity as random rather than fixed. This method requires stronger iden-
tifying assumptions than fixed effects approaches but can yield more efficient estimates when
these assumptions are satisfied, particularly in situations where time-invariant variables are of
substantive interest or when the within-group variation is limited. [14]

The mathematical foundation of the random effects IV estimator begins with the specification of
the panel data model as y;; = B’ x;: + v’ zi+ + p; + €j¢, where the individual effects y; are assumed to
be independently and identically distributed with p; ~ (0, 03) and independent of the idiosyncratic
error terms ¢€,; ~ (0, 02). The key distinction from fixed effects approaches is the assumption that
E[ui|xit, zit] = 0 for all i and ¢, which allows for the identification of time-invariant variables but
requires the stronger assumption that individual effects are uncorrelated with all explanatory
variables.
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The endogeneity problem in random effects models can arise from correlation between the
explanatory variables and either the individual effects u; or the idiosyncratic error terms ¢;;. When
E [x;¢ui] # 0O, the random effects assumption is violated, and consistent estimation requires either
moving to a fixed effects specification or finding instruments that can address this correlation.
When E|[x;:€;:] # 0 but E[x;:u;] = 0O, instrumental variable techniques can be applied while
maintaining the random effects framework.

The random effects IV estimator employs a generalized least squares transformation that ac-
counts for the error component structure while incorporating instrumental variables to address
endogeneity. The composite error term v;, = y; + €;; has variance-covariance structure:

2, 2
o-+os ift=s
E[V,‘tV,'S]Z l; € .

o) ift+s

This error structure necessitates a transformation that accounts for the serial correlation induced
by the presence of individual effects. The generalized least squares transformation is given by:

* - * =
Yir = Yit =0y, X, = Xit — 0X;
it It

2
U€
a€2 +T UZ

variances of the error components.

where 8 =1 -

represents the transformation parameter that depends on the relative

The random effects IV estimator applies instrumental variables to the GLS-transformed data.
Let w;; denote the instruments and define w;, = w;; — @w; as the transformed instruments. The
identifying assumptions for the random effects IV estimator require: first, instrument relevance
with respect to the transformed endogenous variables, E[w,.*tx;“t'] # 0; second, orthogonality with
respect to both error components, E[w;:€;:] = 0 and E[w;:u;] = 0; and third, the maintained

assumption that individual effects are random, E[u;|z;;] = 0.

The mathematical expression for the random effects IV estimator can be written as: [15]

Brerv = (X Py X*) ' X" Py Y™

where X*, W*, and Y* represent the stacked vectors of GLS-transformed variables, and Py« =
W*(W* W*)~'W* denotes the projection matrix onto the space spanned by the transformed
instruments.

The estimation of the transformation parameter 6 requires consistent estimates of the variance
components 03 and o2. In the presence of endogenous regressors, these variance components
cannot be consistently estimated using standard random effects procedures. Instead, a multi-
step approach is typically employed: first, preliminary consistent estimates of the parameters
are obtained using an alternative method such as fixed effects IV; second, residuals from this
preliminary estimation are used to construct consistent estimates of the variance components;
third, the GLS transformation is applied using these estimated variance components; and finally,
instrumental variables are applied to the transformed data.

The asymptotic properties of the random effects IV estimator depend critically on the validity of
the random effects assumption and the strength of the instruments. Under standard regularity
conditions and assuming that the random effects assumption holds, the estimator satisfies:

VNT (Brery — o) 5 N(0,02plimy 7 (N7 X7 Py X*)71)
where o2 represents the variance of the GLS-transformed composite error term. [16]
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The efficiency comparison between random effects IV and fixed effects |V estimators reveals
important trade-offs. When the random effects assumption is valid, the REIV estimator typically
dominates the FEIV estimator in terms of asymptotic efficiency because it utilizes both between
and within variation in the data. However, when individual effects are correlated with explanatory
variables, the REIV estimator becomes inconsistent while the FEIV estimator remains consistent.

The Hausman test provides a framework for testing the validity of the random effects assumption
in the presence of endogenous regressors. The test statistic compares the random effects IV and
fixed effects IV estimates: [17]

H = (Brerv — Brerv)' IV (Brerv) =V (Brerv)] ™ (Brerv — Brerv)

Under the null hypothesis that the random effects assumption is valid, this statistic follows a
chi-squared distribution with degrees of freedom equal to the number of parameters being tested.

The implementation of random effects IV estimation faces several practical challenges. The
estimation of variance components in the presence of endogenous regressors can be computa-
tionally demanding and may require iterative procedures to achieve convergence. The choice of
instruments must satisfy the stronger orthogonality conditions required in the random effects
framework, as instruments must be uncorrelated with both individual effects and idiosyncratic
errors. Additionally, the efficiency gains of random effects IV are most pronounced when there is
substantial between-individual variation in the variables of interest, which may not be present in
all applications. [18]

The random effects IV approach is particularly attractive in contexts where time-invariant variables
are of primary interest or when the within-group variation is insufficient to provide precise
estimates. Examples include studies of the returns to education where both time-varying measures
of experience and time-invariant measures of ability are relevant, or analyses of firm performance
where both time-varying input measures and time-invariant characteristics such as industry
affiliation are important.

5 Difference-in-Differences Instrumental Variables

The difference-in-differences instrumental variables approach represents a sophisticated method-
ology that combines the identification power of quasi-experimental variation with instrumental
variable techniques to address both selection bias and endogeneity simultaneously. This approach
is particularly valuable in policy evaluation contexts where treatment assignment is not random
but varies across individuals and time periods in ways that can be exploited for identification
while maintaining robustness to various forms of endogeneity.

The theoretical framework for difference-in-differences IV builds upon the standard difference-
in-differences model by incorporating endogenous treatment variables that may be correlated
with unobserved determinants of outcomes [19]. Consider the basic setup where y;; represents
outcomes for individual / at time ¢, D;; denotes a potentially endogenous treatment variable, and
T: represents time period indicators. The model can be expressed as:

Yit=a+BDj;+yTi+6;+¢€j;

where §; captures individual fixed effects and ¢;; represents idiosyncratic shocks. The endogeneity
problem arises when E[Dj;e;;] # 0, indicating that treatment assignment is correlated with
unobserved time-varying factors that also affect outcomes.

The difference-in-differences IV estimator addresses this endogeneity by identifying an instrument
Z;; that affects treatment assignment but is uncorrelated with outcome determinants except
through its effect on treatment. The instrument typically exploits policy changes, regulatory
variations, or other exogenous shocks that create quasi-experimental variation in treatment
assignment across individuals and time periods.
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The mathematical structure of the DID-IV estimator can be expressed through a two-stage least
squares framework applied to the differenced data. First, consider the first-differenced version of
the model:

Ayit = BAD;; + YAT; + Aej;

where Ay;: = yir — yit—1 represents the first difference of outcomes, and similar notation applies
to other variables. This differencing eliminates time-invariant individual effects, but endogeneity
may persist if E[AD;;Aej¢] # O.

The instrument A Z;; must satisfy two key conditions in the differenced specification: relevance
requires E[AZ;;ADj;] # 0, indicating that changes in the instrument are correlated with changes
in treatment status; and exogeneity demands E[AZ;;A¢e;;] = 0, requiring that changes in the
instrument are uncorrelated with changes in unobserved outcome determinants.

The DID-IV estimator can be computed through the standard two-stage least squares procedure:
First stage: AD;; = mo + mAZ;; + moAT; + ujy

Second stage: Ay;; = ﬁﬁ +yAT; + €

where A/D\,t represents the predicted values from the first stage regression.

The mathematical expression for the DID-IV estimator in matrix form is: [20]

Boro-1v = (AD'PazAD)'AD'Ppz Ay

where Pry = AZ(AZ’AZ)"'AZ’ represents the projection matrix onto the space spanned by
the first-differenced instruments.

An alternative formulation of the DID-IV estimator exploits the interaction between group
membership and time periods to create identifying variation. Consider a setting where individuals
are assigned to treatment and control groups, and treatment intensity varies over time. The model
can be specified as:

Yit=a+BDjs+y:+6; +€i;

where y, represents time fixed effects. The instrument is constructed as Z;; = G; x T, where G;
indicates group membership and 7; represents time periods. This interaction term captures the
differential exposure to treatment across groups and time periods. [21]

The identifying assumption for this interaction-based DID-IV approach is that the interaction
between group membership and time periods affects outcomes only through its impact on
treatment assignment. Formally, this requires E[(G; X T;)e;:|G;, T;] = 0, conditional on group and
time fixed effects.

The two-way fixed effects DID-IV estimator incorporates both individual and time fixed effects
while using the interaction instrument:

y,-t=a+,BD,~t+yt+5,-+e,-t

First stage: Djy = mo + m1(G; X Ty) + 2, e Te + 2w, Gj + ujt

The asymptotic properties of the DID-IV estimator follow standard instrumental variable theory,
but the interpretation requires careful consideration of the identifying variation. Under regularity
conditions, the estimator satisfies:

. d . , _
VNT (Boro-1v — Bo) — N(0,0%plimy 7. (AD’PazAD) ™)
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The efficiency of the DID-IV estimator depends on the strength of the instruments and the amount
of identifying variation available after controlling for fixed effects [22]. Strong instruments that
generate substantial variation in treatment assignment will yield more precise estimates, while
weak instruments may lead to large standard errors and poor finite-sample performance.

The validity of the DID-IV approach rests on several key assumptions beyond the standard
instrumental variable requirements. The parallel trends assumption requires that treated and
control groups would have followed similar outcome trajectories in the absence of treatment,
formally expressed as E[Aej;|G; = 1] = E[Aej¢|G; = 0]. The exclusion restriction demands that
the instrument affects outcomes only through its impact on treatment assignment, ruling out
direct effects of the instrument on outcomes.

Diagnostic testing for DID-IV models involves several components. Pre-treatment trend analysis
can assess the plausibility of the parallel trends assumption by examining whether treated and
control groups exhibited similar outcome trajectories before the policy intervention [23]. First-
stage F-statistics computed using the interaction instruments provide evidence on instrument
strength. Placebo tests using pre-treatment periods or alternative outcomes can help validate the
exclusion restriction.

The DID-IV approach is particularly powerful in policy evaluation contexts where treatment assign-
ment is endogenous but varies quasi-experimentally across groups and time periods. Examples
include studies of minimum wage effects where policy changes create identifying variation but
labor market conditions may be correlated with both wage policies and employment outcomes,
or analyses of education policies where program adoption is endogenous but timing varies across
jurisdictions in ways that can be exploited for identification.

6 System Generalized Method of Moments

The system generalized method of moments estimator represents one of the most sophisticated
approaches to addressing endogeneity in dynamic panel data models, particularly when external
instruments are unavailable or weak. This methodology exploits the lagged structure of the data
to generate internal instruments while simultaneously addressing the problems of unobserved
heterogeneity and dynamic endogeneity that arise in models with lagged dependent variables.
[24]

The theoretical foundation of system GMM builds upon the recognition that different transfor-
mations of the dynamic panel data model yield distinct sets of moment conditions that can be
combined to improve efficiency and address weak instrument problems. Consider the dynamic
panel data model:

/7 !
Yit = ayir1+ B Xie + ¥ Zie + i + €1

where y;;_; represents the lagged dependent variable, x;; denotes potentially endogenous ex-
planatory variables, z;; represents predetermined variables, y; captures individual fixed effects,
and ¢;; denotes idiosyncratic innovations.

The first-differenced transformation eliminates individual fixed effects but creates correlation
between the transformed lagged dependent variable and the transformed error term. Specifically,
Ayii—1 = Yit—1 — Yit—2 is correlated with Ae;; = €j; — €;;—1 because both contain ¢;,_1. This me-
chanical correlation necessitates the use of instrumental variables even for the lagged dependent
variable.

The key insight underlying system GMM is that lagged levels of variables can serve as instruments
for equations in first differences, while lagged differences can serve as instruments for equations
in levels [25]. For the first-differenced equation, moment conditions can be formed using lagged
levels as instruments:

E[_y,'t_sAeit] = 0 fOF s > 2 E[X,'t_SAG,'t] = O for s > 2
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These moment conditions are valid under the assumption that the idiosyncratic errors ¢;; are not
serially correlated and that the initial conditions satisfy appropriate stationarity requirements.

For the levels equation, additional moment conditions can be constructed using lagged first
differences as instruments:

E[Ayjt—1(pi +€it)] =0 E[Axji—1 (i +€it)] =0

These moment conditions require the stronger assumption that the first differences of the variables
are uncorrelated with the individual fixed effects, which holds when the initial deviations from
long-run equilibrium are uncorrelated with the individual effects.

The mathematical framework for system GMM combines these two sets of moment conditions
into a unified estimation procedure. Let Ay”, = Ay;: — aAy;:—1 — B'Ax;: — y'Az;; represent the
first-differenced residual and y}, = y;: — ayjt-1 — B'xit — v’ zit — i denote the levels residual. The
system GMM estimator is based on the stacked moment conditions: [26]

A *
E [VV”LA}:”] =0

itYit
where Wlﬁ represents the instrument matrix for the first-differenced equation and W,% denotes
the instrument matrix for the levels equation.

The construction of the instrument matrices requires careful consideration of the timing assump-
tions and the availability of lagged values. For the first-differenced equation, the instrument
matrix typically takes the form:

WE = [Yit-2, Yit-3s -+ o> Yits Xit—2, Xit =3+ - - Xi1, Zit—15 Zit—2, - > Zi1]

For the levels equation, the instrument matrix is constructed using lagged first differences:
WE = [Ayie-1, Axjt—1, Azt

The system GMM estimator is obtained by minimizing the quadratic form:

bsys = argming gn (6)' Q' gn (6)

where gy (8) represents the stacked sample moment vector and Q, denotes the weighting matrix
that accounts for the heteroskedasticity and serial correlation structure of the stacked system.

The optimal weighting matrix for system GMM has a block diagonal structure: [27]

«_|Qaa O

where Qap = E[WAAe; AeieWE'] and Q. = E[WL(u; + €;)*WE'] represent the variance-
covariance matrices for the first-differenced and levels equations, respectively.

The two-step system GMM estimator implements this optimal weighting through an iterative
procedure. In the first step, moment conditions are estimated using an identity weighting matrix
or a weighting matrix that assumes homoskedasticity and no serial correlation. The residuals
from this first-step estimation are then used to construct a consistent estimate of the optimal
weighting matrix, which is employed in the second-step estimation.

The asymptotic properties of the system GMM estimator depend on the validity of the moment
conditions and the behavior of the cross-sectional and time dimensions. Under standard regularity
conditions, the estimator satisfies: [28]

VN(Bsys - 8) 5 N(0,(G'Q71G) )

where G = E[%] represents the gradient matrix of the moment conditions. This asymptotic
normality result assumes that the time dimension T is fixed while the cross-sectional dimension
N approaches infinity.
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The efficiency gains of system GMM relative to first-differenced GMM arise from the additional
moment conditions provided by the levels equation. These additional restrictions are particularly
valuable when the lagged levels are weak instruments for the first-differenced equation, a problem
that commonly occurs when the dependent variable is highly persistent. The levels equation
provides alternative identifying variation that can substantially improve precision.

The validity of system GMM rests on several key assumptions beyond those required for first-
differenced GMM [29]. The stationarity assumption requires that the initial observations are
drawn from the stationary distribution of the process, ensuring that the correlation between lagged
differences and individual effects vanishes. The mean stationarity condition can be expressed
as E[ynuil = Elyiuil = -+ = Elyiruil, which holds when deviations from individual-specific
means are uncorrelated with the individual effects themselves.

Diagnostic testing for system GMM involves several components designed to assess the validity
of the identifying assumptions and the adequacy of the specification. The Arellano-Bond test for
serial correlation examines whether the first-differenced residuals exhibit second-order serial
correlation, which would invalidate the moment conditions based on lagged levels. The test
statistic is constructed as:

AR(2) = DI NN
\/Var(Z,-Ai] N7, Aéichéie 7)

The Hansen test of overidentifying restrictions provides a specification test for the validity of the
instrument set [30]. This test examines whether the sample moment conditions are sufficiently
close to zero, as required by the population orthogonality conditions:

A A A d
J=N-gn0)Qy en(0) = x*(J - K)
where J represents the number of moment conditions and K denotes the number of parameters.

The difference-in-Hansen test allows for testing the validity of subsets of instruments by compar-
ing the Hansen statistics from restricted and unrestricted specifications. This test is particularly
useful for examining whether the additional moment conditions from the levels equation are
valid:

d
AJ = Jynrestricted = Jrestricted — XQ(AJ)

where AJ represents the difference in the number of overidentifying restrictions between the
two specifications.

The finite-sample performance of system GMM can be adversely affected by instrument prolif-
eration, particularly when the time dimension is large relative to the cross-sectional dimension
[31]. The number of instruments grows quadratically with the time dimension, potentially leading
to overfitting and weak identification problems. Several strategies have been developed to ad-
dress this issue, including instrument reduction techniques that limit the number of lags used as
instruments and methods that combine instruments to reduce dimensionality.

The collapse option in system GMM estimation creates one instrument for each variable and lag
distance rather than one instrument for each time period, variable, and lag distance. This approach
can substantially reduce the instrument count while maintaining the essential identifying variation.
The mathematical implementation involves creating instrument matrices where each column
corresponds to a specific lag rather than a specific time period and lag combination. [32]

System GMM has found widespread application in empirical economics, particularly in studies
of firm dynamics, economic growth, and financial development. The methodology is especially
valuable when analyzing highly persistent dependent variables where fixed effects estimators
may suffer from weak identification and when external instruments are unavailable or suspect.
However, the validity of the approach depends critically on the stationarity assumptions and
the absence of serial correlation, requirements that must be carefully assessed in empirical
applications.
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7 Comparative Analysis and Performance Evaluation

The comparative analysis of instrumental variable approaches in panel data models requires a
comprehensive evaluation of their theoretical properties, identifying assumptions, and empirical
performance under various data generating processes. Each methodology embodies specific
trade-offs between robustness, efficiency, and the strength of maintained assumptions, making
the choice among approaches critically dependent on the characteristics of the particular empirical
application and the nature of the underlying data generating process. [33]

The theoretical comparison begins with an examination of the identifying assumptions underlying
each approach. Fixed effects instrumental variables requires the weakest assumptions regarding
the correlation between individual effects and explanatory variables, allowing for arbitrary corre-
lation patterns while maintaining consistency through the within transformation. However, this
robustness comes at the cost of eliminating all time-invariant variation and potentially exacerbat-
ing weak instrument problems when the identifying variation is primarily cross-sectional rather
than temporal.

Random effects instrumental variables maintains efficiency advantages by exploiting both between
and within variation, but requires the stronger assumption that individual effects are uncorrelated
with all explanatory variables. This assumption becomes particularly restrictive in applications
where unobserved individual characteristics are likely to be systematically related to the variables
of interest [34]. The efficiency gains are most pronounced when time-invariant variables are of
primary interest or when within-group variation is limited.

The mathematical comparison of asymptotic variances reveals the efficiency ranking among
estimators when their respective assumptions are satisfied. Under the random effects assumption,
the asymptotic variance matrix of the REIV estimator is given by:

Avar(Brerv) = 02(X* Py X*)"
while the asymptotic variance of the FEIV estimator is:
Avar(Beerv) = o2(X Py X)~!

The efficiency comparison depends on the relative magnitudes of o2 and o2, as well as the
differences in the transformed design matrices. Generally, when the random effects assumptions
are valid, the REIV estimator achieves lower asymptotic variance due to its utilization of additional
identifying variation. [35]

Difference-in-differences instrumental variables offers a middle ground by combining quasi-
experimental identification with robustness to certain forms of endogeneity. The approach
requires the parallel trends assumption, which is often more plausible than the random effects
assumption but stronger than the requirements for fixed effects approaches. The efficiency
of DID-IV depends critically on the strength of the interaction instruments and the extent of
differential treatment exposure across groups and time periods.

System GMM represents the most complex approach, requiring stationarity assumptions and
specific timing restrictions that may be difficult to verify in practice. However, when these
assumptions are satisfied, system GMM can provide substantial efficiency gains, particularly in
dynamic specifications where external instruments are weak or unavailable [36]. The mathematical
expression for the asymptotic variance incorporates information from both first-differenced and
levels moment conditions:

Avar(fsys) = (G’'Q7'G)™!

where the gradient matrix G and weighting matrix Q reflect the combined moment conditions
from both transformations.

The robustness comparison reveals important differences in sensitivity to violations of identifying
assumptions. Fixed effects IV maintains consistency even when individual effects are correlated
with explanatory variables, but may suffer from bias when instruments are weak in the within
dimension. Random effects IV becomes inconsistent when the individual effects assumption is
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violated, but typically provides more precise estimates when the assumption holds [37]. System
GMM can be sensitive to violations of stationarity assumptions and may suffer from finite-sample
bias when the instrument set is large relative to the sample size.

The empirical performance evaluation requires consideration of finite-sample properties, which
may differ substantially from asymptotic predictions. Monte Carlo studies have revealed that
fixed effects IV can exhibit substantial bias when instruments are weak in the within dimension,
particularly when the time dimension is small. Random effects IV typically displays better finite-
sample performance when its assumptions are satisfied but can exhibit large bias when individual
effects are correlated with explanatory variables.

System GMM finite-sample performance depends critically on the persistence of the dependent
variable and the strength of the internal instruments. When the dependent variable is highly
persistent, lagged levels may be weak instruments for first differences, leading to substantial finite-
sample bias [38]. The system estimator partially addresses this problem by combining moment
conditions from levels and differences, but performance can still be poor when stationarity
assumptions are violated.

The diagnostic testing capabilities vary significantly across approaches. Fixed effects IV can employ
standard weak instrument tests applied to within-transformed data, providing straightforward
assessment of instrument strength. Random effects IV requires additional testing of the random
effects assumption through Hausman-type tests, complicating the diagnostic process. System
GMM offers the most comprehensive set of diagnostic tests, including serial correlation tests,
overidentification tests, and difference-in-Hansen tests for subset validity. [39]

The computational complexity increases substantially from fixed effects IV to system GMM.
Fixed effects IV requires only standard two-stage least squares applied to transformed data,
making it computationally straightforward even in large samples. Random effects IV involves
additional variance component estimation but remains relatively simple. System GMM requires
iterative optimization procedures and careful construction of instrument matrices, making it
computationally demanding, particularly when the time dimension is large.

The choice among approaches depends on several key factors [40]. When external instruments
are strong and time-invariant effects are the primary concern, fixed effects IV provides a robust
and straightforward solution. When time-invariant variables are of interest and the random effects
assumption is plausible, random effects IV offers efficiency advantages. When quasi-experimental
variation is available and parallel trends assumptions are credible, DID-1V provides powerful
identification. When external instruments are weak or unavailable and dynamic specifications are
required, system GMM may be the only viable approach despite its complexity.

The practical guidance for empirical researchers involves a systematic approach to method
selection [41]. Begin with an assessment of the data generating process and the likely sources of
endogeneity. Evaluate the availability and strength of external instruments through first-stage
diagnostics. Test the plausibility of random effects assumptions using Hausman tests. Assess
the credibility of parallel trends assumptions through pre-treatment trend analysis. Consider the
computational resources available and the complexity of the required specification.

The recent developments in the literature have focused on addressing some of the limitations
of these approaches [42]. Weak instrument robust inference methods provide more reliable
statistical inference when instruments are weak. Instrument selection procedures help address
the proliferation problem in system GMM. Robust standard error methods account for various
forms of heteroskedasticity and serial correlation. These advances continue to expand the toolkit
available for addressing endogeneity in panel data applications.

8 Applications and Empirical Considerations

The practical implementation of instrumental variable approaches in panel data models requires
careful attention to a range of empirical considerations that extend beyond the theoretical
properties of the estimators [43]. These considerations include data requirements, specification
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choices, diagnostic procedures, and interpretation of results, all of which play crucial roles in
determining the success of the empirical analysis and the credibility of the resulting causal
inferences.

The data requirements for different instrumental variable approaches vary significantly in terms
of both the cross-sectional and time dimensions. Fixed effects IV methods typically require longer
time series for each individual to provide sufficient within-variation for identification, particularly
when the explanatory variables exhibit high persistence. The minimum effective time dimension
depends on the nature of the variables and the strength of the instruments, but panels with fewer
than five time periods often provide insufficient variation for reliable estimation.

Random effects IV approaches can work effectively with shorter time series because they exploit
both between and within variation, but they require larger cross-sectional dimensions to provide
precise estimates of the variance components [44]. The trade-off between time and cross-
sectional dimensions becomes particularly important when the panel is unbalanced, as missing
observations can substantially reduce the effective sample size and complicate the variance
component estimation.

System GMM methods face unique data requirements due to their reliance on lagged instruments.
The approach requires a minimum of four time periods to implement the basic specification, but
longer time series are generally preferable to provide more moment conditions and improve effi-
ciency. However, very long time series can lead to instrument proliferation problems, necessitating
careful instrument selection strategies.

The specification of the instrument set represents one of the most critical decisions in empirical
applications [45]. For external instrument approaches, the choice requires balancing instrument
strength against the plausibility of the exclusion restriction. Strong instruments that are highly
correlated with the endogenous variables may be more likely to have direct effects on the outcome,
potentially violating the exclusion restriction. Weak instruments that clearly satisfy the exclusion
restriction may provide insufficient identification power for reliable estimation.

The mathematical framework for assessing instrument strength involves examining the first-stage
regression statistics. The F-statistic for joint significance of the instruments should exceed con-
ventional thresholds, typically 10 for single endogenous variable cases. For multiple endogenous
variables, more sophisticated weak identification tests such as the Cragg-Donald statistic provide
appropriate diagnostics [46]. The effective F-statistic can be computed as:

_ (SSR.—SSR,)/
Ferr = SSR,/(n—k) .
where SSR, and SSR, represent the sum of squared residuals from restricted and unrestricted
first-stage regressions, g denotes the number of instruments, n represents the sample size, and k
denotes the number of regressors.

The treatment of unbalanced panels requires special consideration in instrumental variable appli-
cations. Missing observations can arise from attrition, non-response, or the natural entry and exit
of units from the panel. The pattern of missingness may be related to both the instruments and
the outcomes, potentially introducing selection bias that compounds the original endogeneity
problem. [47]

Fixed effects IV approaches handle unbalanced panels relatively straightforwardly through the
within transformation, but the effectiveness depends on having sufficient observations per
individual after transformation. Random effects IV methods require more careful treatment of
unbalanced data, particularly in the variance component estimation stage. System GMM faces
particular challenges with unbalanced panels because the moment conditions depend on specific
lag structures that may not be available for all observations.

The specification of lag structures in dynamic panel models requires careful consideration of
both theoretical and empirical factors. The inclusion of multiple lags of the dependent variable
can improve the fit but complicates the identification strategy and increases the instrument
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requirements [48]. The Akaike and Bayesian information criteria provide guidance on lag selection,
but theoretical considerations should take precedence when available.

The mathematical representation of lag selection involves comparing models with different lag
structures:

_yP
Yit = 2j_q @ Yit-j + B Xit + V' Zit + pi + €it

where p represents the maximum lag length. The optimal lag length can be selected by minimizing
information criteria or through sequential testing procedures that examine the significance of
additional lags.

The treatment of time effects represents another important specification choice. Many economic
time series exhibit common trends or cyclical patterns that affect all individuals similarly [49].
Failing to account for these common factors can lead to spurious correlation between instruments
and outcomes, violating the exclusion restriction. Time fixed effects can be included in most
instrumental variable specifications:

Yit =B’ Xie + V' Zie + Te + pi + €1

where 1; represents time-specific effects. However, the inclusion of time effects may absorb
some of the identifying variation, particularly in DID-IV applications where the instruments are
constructed from time-varying policy changes.

The robustness assessment of instrumental variable results requires a comprehensive battery
of diagnostic tests and sensitivity analyses [50]. Beyond the standard weak identification and
overidentification tests, researchers should examine the stability of results across different speci-
fications, sample periods, and instrument sets. Placebo tests using alternative outcomes or time
periods can provide evidence on the validity of the identifying assumptions.

The interpretation of instrumental variable estimates requires careful attention to the local average
treatment effect interpretation. IV estimates identify causal effects for the subset of individuals
whose treatment status is affected by the instrument, known as compliers. This local average
treatment effect may differ from the average treatment effect for the entire population, particularly
when treatment effects are heterogeneous across individuals. [51]

The mathematical expression for the local average treatment effect in the context of panel data
IV models is:

:B _ Elyit(1)=yit(0)|Dit (Zit=1)>Dj¢ (Z;+=0) |
LATE = PrDi¢ (Zic=1)>D; (Z;r=0) ]

where y;.(d) represents potential outcomes under treatment status d, D;;(z) denotes potential
treatment status under instrument value z, and the conditioning is on the complier population.

The reporting of instrumental variable results should include comprehensive information about
the first stage, reduced form, and second stage relationships. The first stage results demonstrate
instrument strength and relevance, the reduced form results show the overall relationship be-
tween instruments and outcomes, and the second stage provides the causal parameter estimates.
Standard errors should be computed using methods that account for the two-step nature of the
estimation procedure.

The sensitivity analysis for instrumental variable results should examine robustness to various
assumptions and specifications [52]. This includes testing different instrument sets, varying the
lag structure in dynamic models, including different sets of control variables, and examining
subsamples of the data. Monte Carlo sensitivity analysis can be particularly valuable for assessing
robustness to violations of key assumptions.

The presentation of diagnostic test results requires careful interpretation of the test statistics and
their implications for the validity of the empirical strategy. Weak identification tests should be
reported with appropriate critical values, overidentification tests should be interpreted in light of
the possibility that all instruments may be invalid, and serial correlation tests in dynamic models
should be evaluated against the theoretical predictions of the model.
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The policy implications of instrumental variable results require careful consideration of the external
validity and generalizability of the findings. The local average treatment effect interpretation
means that the results may not apply to policy interventions that affect different populations or
operate through different mechanisms [53]. The specific characteristics of the complier population
should be discussed when possible to aid in the interpretation of the policy relevance.

9 Conclusion

This comprehensive analysis of instrumental variable approaches in linear panel data models
reveals the sophisticated nature of addressing endogeneity concerns while maintaining the ad-
vantages of longitudinal data structures. The comparison of fixed effects instrumental variables,
random effects instrumental variables, difference-in-differences instrumental variables, and sys-
tem generalized method of moments estimators demonstrates that each approach embodies
distinct theoretical foundations, identifying assumptions, and empirical performance characteris-
tics that make them suitable for different research contexts and data generating processes.

The mathematical exposition throughout this paper establishes that the choice among instru-
mental variable methods depends critically on the interaction between the nature of unobserved
heterogeneity, the sources of endogeneity, the availability of valid instruments, and the char-
acteristics of the panel data structure. Fixed effects IV approaches provide robust control for
time-invariant unobserved heterogeneity but may suffer from weak identification when instru-
ments lack sufficient time-series variation [54]. Random effects IV methods offer efficiency gains
through utilization of both between and within variation but require stronger assumptions about
the correlation between individual effects and explanatory variables.

The analysis of difference-in-differences instrumental variables reveals its particular strength in
policy evaluation contexts where quasi-experimental variation can be combined with instrumental
variable techniques to address both selection bias and endogeneity simultaneously. This ap-
proach requires careful attention to parallel trends assumptions and the construction of credible
interaction instruments, but provides powerful identification when these conditions are satisfied.

System GMM emerges as the most technically sophisticated approach, capable of addressing
dynamic endogeneity through internal instruments while handling multiple sources of bias. How-
ever, this sophistication comes with increased complexity in implementation, stronger stationarity
assumptions, and potential sensitivity to instrument proliferation and finite-sample bias [55].
The diagnostic framework for system GMM, including serial correlation tests and overidentifi-
cation restrictions, provides comprehensive tools for assessing the validity of the identifying
assumptions.

The comparative analysis reveals that no single instrumental variable approach dominates across
all empirical contexts. Instead, the optimal choice depends on a careful assessment of the
specific characteristics of the research question, data structure, and identifying variation available.
Fixed effects IV provides a robust baseline when external instruments are strong and time-
invariant effects are the primary concern. Random effects IV offers efficiency advantages when
its assumptions are credible and time-invariant variables are of interest [56]. Difference-in-
differences IV excels in quasi-experimental settings with credible parallel trends assumptions.
System GMM becomes essential when external instruments are weak or unavailable and dynamic
specifications are required.

The empirical considerations discussed in this paper highlight the importance of careful implemen-
tation and diagnostic testing in instrumental variable applications. The assessment of instrument
strength, the evaluation of identifying assumptions, and the interpretation of local average treat-
ment effects all require sophisticated understanding of the underlying theoretical frameworks.
The finite-sample performance of these estimators can deviate substantially from their asymptotic
properties, necessitating careful attention to sample size requirements and diagnostic procedures.

The mathematical frameworks developed throughout this analysis provide a unified foundation
for understanding the relationships among different instrumental variable approaches and their
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performance characteristics [57]. The derivation of asymptotic variance expressions, the construc-
tion of moment conditions, and the specification of identifying assumptions offer researchers the
tools necessary to make informed choices among competing methodologies.

Future research directions in this area continue to address the limitations identified in this com-
parative analysis. The development of weak instrument robust inference methods provides more
reliable statistical procedures when identification is marginal. Machine learning approaches to
instrument selection offer new tools for addressing the proliferation problem in system GMM
applications. The integration of experimental and quasi-experimental evidence with observational
panel data methods promises to enhance the credibility of causal inference in complex economic
environments. [58]

The policy implications of instrumental variable research in panel data settings extend beyond the
specific empirical applications to broader questions about the design of economic policies and the
evaluation of their effectiveness. The local average treatment effect interpretation emphasizes the
importance of understanding the heterogeneity of treatment effects across different populations
and the mechanisms through which policies operate. This understanding is essential for designing
effective interventions and predicting their effects in new contexts.

The technological advances in computational methods and the increasing availability of large-scale
panel datasets continue to expand the opportunities for applying these sophisticated instrumental
variable techniques. However, the fundamental challenges of finding credible instruments and
satisfying identifying assumptions remain central to the success of empirical research in this area
[59]. The frameworks developed in this paper provide guidance for navigating these challenges
while maintaining the rigor necessary for credible causal inference.

The contribution of this analysis to the existing literature lies in its unified mathematical treatment
of diverse instrumental variable approaches and its systematic comparison of their theoretical and
empirical properties. By establishing a common framework for evaluation, this paper facilitates
better understanding of the trade-offs involved in choosing among different methodologies and
provides practical guidance for empirical researchers facing endogeneity concerns in panel data
applications.

The enduring importance of addressing endogeneity in econometric analysis ensures that instru-
mental variable methods will remain central to empirical research in economics and related fields.
The sophisticated techniques analyzed in this paper represent the current state of the art, but
continued methodological development will undoubtedly refine and extend these approaches.
The mathematical foundations established here provide a solid basis for understanding both
current methods and future innovations in the field of instrumental variable estimation for panel
data models. [60]
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