

Comparison of Instrumental Variable Approaches in Addressing Endogeneity within Linear Panel Data Models

Tharindu Jayasekara¹ and Lakmal Weerasinghe²

¹Sabaragamuwa University of Sri Lanka, Pambahinna Road, Belihuloya, Sri Lanka

²Wayamba University of Sri Lanka, Kuliyapitiya-Narammala Road, Kuliyapitiya, Sri Lanka

RESEARCH ARTICLE

Abstract

Endogeneity presents one of the most persistent challenges in empirical econometric analysis, particularly when researchers attempt to establish causal relationships from observational data in panel settings. This paper provides a comprehensive comparative analysis of instrumental variable approaches specifically designed to address endogeneity issues within linear panel data models. We examine the theoretical foundations and practical implementation of fixed effects instrumental variables, random effects instrumental variables, difference-in-differences instrumental variables, and system generalized method of moments estimators. Through detailed mathematical exposition, we demonstrate how each approach handles different sources of endogeneity including omitted variable bias, simultaneity, and measurement error. The analysis reveals that the choice of instrumental variable strategy critically depends on the underlying data generating process, the nature of unobserved heterogeneity, and the availability of valid instruments. Our findings indicate that system GMM estimators perform particularly well when lagged values serve as valid instruments, while fixed effects IV approaches excel in controlling for time-invariant unobserved heterogeneity. The paper contributes to the literature by establishing a unified framework for comparing these methodologies and providing practical guidance for empirical researchers facing endogeneity concerns in panel data analysis.

1 Introduction

The problem of endogeneity in econometric analysis represents a fundamental challenge that undermines the ability to draw causal inferences from observational data [1]. When explanatory variables are correlated with the error term, ordinary least squares estimation yields biased and inconsistent parameter estimates, leading to potentially misleading conclusions about the relationships under investigation. This issue becomes particularly complex in panel data settings, where researchers must simultaneously address multiple sources of endogeneity while accounting for the longitudinal structure of the data.

Panel data models offer unique advantages in addressing endogeneity concerns through their ability to control for unobserved heterogeneity using within-individual variation over time. However, the presence of endogenous regressors requires sophisticated instrumental variable techniques that can exploit the panel structure while maintaining the identifying assumptions necessary for consistent estimation. The choice among available instrumental variable approaches depends critically on the nature of the endogeneity problem, the characteristics of the data generating process, and the availability of valid instruments. [2]

The theoretical foundations of instrumental variable estimation in panel data models build upon the classical two-stage least squares framework while incorporating the additional complexity introduced by the panel structure. Consider a general linear panel data model of the form $y_{it} = \alpha + \beta x_{it} + \gamma z_{it} + \mu_i + \epsilon_{it}$, where y_{it} represents the dependent variable for individual i at time t , x_{it} denotes potentially endogenous explanatory variables, z_{it} represents exogenous

OPEN ACCESS Reproducible Model

Edited by
Associate Editor

Curated by
The Editor-in-Chief

control variables, μ_i captures time-invariant unobserved heterogeneity, and ϵ_{it} represents the idiosyncratic error term. The endogeneity problem arises when $E[x_{it}\epsilon_{it}] \neq 0$ or $E[x_{it}\mu_i] \neq 0$, violating the orthogonality conditions required for consistent estimation.

The development of instrumental variable techniques for panel data has evolved significantly over the past several decades, driven by the recognition that different sources of endogeneity require distinct methodological approaches. Fixed effects instrumental variables methods focus primarily on eliminating time-invariant unobserved heterogeneity while using external instruments to address remaining endogeneity concerns. Random effects instrumental variables approaches maintain efficiency gains by modeling the unobserved heterogeneity as random while requiring stronger identifying assumptions. Difference-in-differences instrumental variables combine the identification power of quasi-experimental variation with instrumental variable techniques to address both selection bias and endogeneity simultaneously. [3]

More recently, generalized method of moments estimators have gained prominence in panel data applications due to their ability to use internal instruments derived from the lagged structure of the data. These approaches exploit the orthogonality conditions between lagged values of variables and current period innovations, providing a systematic framework for addressing endogeneity without relying on external instruments. The system GMM estimator, in particular, combines moment conditions from both first-differenced and levels equations to improve efficiency and address weak instrument problems.

The comparative analysis of these instrumental variable approaches requires careful consideration of their underlying assumptions, identification strategies, and performance characteristics under different data generating processes. Each method involves specific trade-offs between robustness, efficiency, and the strength of identifying assumptions [4]. Understanding these trade-offs is essential for empirical researchers seeking to address endogeneity concerns while maintaining the credibility of their causal inferences.

This paper contributes to the existing literature by providing a unified mathematical framework for comparing instrumental variable approaches in panel data settings. We develop a comprehensive theoretical analysis that illuminates the conditions under which each method is most appropriate and examine the relative performance of these estimators under various scenarios. The analysis focuses particularly on the mathematical foundations underlying each approach, demonstrating how different identifying assumptions translate into specific moment conditions and estimation procedures.

2 Instrumental variable estimation in panel data models

Consider the general linear dynamic panel data model: [5]

$$y_{it} = \alpha y_{it-1} + \beta' x_{it} + \gamma' z_{it} + \mu_i + \epsilon_{it}$$

where y_{it} represents the dependent variable, y_{it-1} is the lagged dependent variable, x_{it} is a $K \times 1$ vector of potentially endogenous explanatory variables, z_{it} is an $L \times 1$ vector of predetermined or exogenous variables, μ_i denotes individual-specific time-invariant effects, and ϵ_{it} represents the idiosyncratic error term.

The endogeneity problem manifests through several potential channels. First, simultaneity bias occurs when $E[x_{it}\epsilon_{it}] \neq 0$, indicating that current values of the explanatory variables are correlated with current innovations in the dependent variable. Second, unobserved heterogeneity bias arises when $E[x_{it}\mu_i] \neq 0$, suggesting that the explanatory variables are correlated with time-invariant unobserved characteristics. Third, dynamic endogeneity emerges in models with lagged dependent variables, where $E[y_{it-1}\epsilon_{it}] \neq 0$ due to the mechanical correlation between lagged outcomes and individual effects.

The instrumental variable approach addresses these endogeneity concerns by identifying a set of instruments w_{it} that satisfy two fundamental conditions: relevance and exogeneity. The relevance

condition requires that the instruments are sufficiently correlated with the endogenous variables, formally expressed as $E[w_{it}x'_{it}] \neq 0$. The exogeneity condition demands that the instruments are uncorrelated with the error components, requiring both $E[w_{it}\epsilon_{it}] = 0$ and $E[w_{it}\mu_i] = 0$ in the context of panel data models.

The mathematical framework for instrumental variable estimation in panel data builds upon the generalized method of moments approach. Define the moment conditions as $E[g_{it}(\theta)] = 0$, where $g_{it}(\theta)$ represents the vector of moment conditions and $\theta = (\alpha, \beta', \gamma')'$ denotes the parameter vector of interest. For a given set of instruments w_{it} , the moment conditions take the form:

$$E[w_{it}(y_{it} - \alpha y_{it-1} - \beta' x_{it} - \gamma' z_{it} - \mu_i)] = 0$$

The challenge in panel data settings lies in appropriately handling the individual effects μ_i while maintaining the validity of the moment conditions. Different instrumental variable approaches adopt distinct strategies for addressing this challenge, leading to varying sets of identifying assumptions and moment conditions.

The matrix representation of the instrumental variable estimator provides insight into the mathematical structure underlying different approaches [6]. Let Y denote the $NT \times 1$ stacked vector of dependent variables, X represent the $NT \times (K + L + 1)$ matrix of explanatory variables including lagged dependent variables, and W denote the $NT \times J$ matrix of instruments, where J represents the total number of instruments. The GMM estimator is defined as:

$$\hat{\theta}_{GMM} = \arg \min_{\theta} g_N(\theta)' \Omega_N^{-1} g_N(\theta)$$

where $g_N(\theta) = N^{-1} \sum_{i=1}^N \sum_{t=1}^T w_{it}(y_{it} - x'_{it}\theta - \mu_i)$ represents the sample moment vector and Ω_N denotes a consistent estimator of the variance-covariance matrix of the moment conditions.

The choice of weighting matrix Ω_N plays a crucial role in determining the efficiency properties of the GMM estimator. The optimal weighting matrix is given by $\Omega^* = E[g_{it}g'_{it}]$, which yields the most efficient GMM estimator within the class of estimators based on the same set of moment conditions. In practice, this optimal weighting matrix must be estimated consistently, typically through a two-step procedure that first obtains preliminary estimates using an identity weighting matrix.

The asymptotic properties of instrumental variable estimators in panel data models depend critically on the assumptions regarding the asymptotic behavior of the cross-sectional and time dimensions [7]. Under standard regularity conditions and assuming that both N and T approach infinity, the GMM estimator satisfies:

$$\sqrt{NT}(\hat{\theta}_{GMM} - \theta_0) \xrightarrow{d} N(0, (G'\Omega^{-1}G)^{-1})$$

where $G = E[\frac{\partial g_{it}}{\partial \theta'}]$ represents the gradient matrix and θ_0 denotes the true parameter value. This asymptotic normality result provides the foundation for statistical inference and hypothesis testing in instrumental variable panel data models.

The identification of parameters in instrumental variable panel data models requires careful consideration of the rank conditions and the strength of the instruments. The order condition requires that the number of instruments is at least as large as the number of endogenous variables, while the rank condition demands that the instrument matrix has full column rank. However, these necessary conditions are not sufficient to ensure reliable estimation, as weak instruments can lead to substantial finite-sample bias and poor asymptotic approximations. [8]

The problem of weak instruments becomes particularly acute in panel data settings where the time dimension may be limited, reducing the number of available lagged values that can serve as instruments. The strength of instruments can be assessed through various diagnostic tests,

including the first-stage F-statistic and the Cragg-Donald weak identification test. These tests provide guidance on whether the instruments are sufficiently strong to support reliable causal inference.

3 Fixed Effects Instrumental Variables

The fixed effects instrumental variables approach represents one of the most widely used methods for addressing endogeneity in panel data models while simultaneously controlling for time-invariant unobserved heterogeneity. This method combines the within-group transformation of fixed effects estimation with instrumental variable techniques to eliminate individual-specific effects and address remaining endogeneity concerns through external instruments.

The mathematical foundation of the fixed effects IV estimator begins with the standard panel data model $y_{it} = \beta' x_{it} + \gamma' z_{it} + \mu_i + \epsilon_{it}$, where the primary concern is that $E[x_{it}\epsilon_{it}] \neq 0$ even after controlling for individual fixed effects μ_i . The within-group transformation eliminates the individual effects by subtracting individual-specific means from each variable: [9]

$$\tilde{y}_{it} = y_{it} - \bar{y}_i = \beta'(x_{it} - \bar{x}_i) + \gamma'(z_{it} - \bar{z}_i) + (\epsilon_{it} - \bar{\epsilon}_i)$$

where $\bar{y}_i = T^{-1} \sum_{t=1}^T y_{it}$ represents the individual-specific time average of the dependent variable, and similar notation applies to other variables. This transformation effectively removes the individual fixed effects μ_i from the model, but endogeneity concerns may persist if the time-varying component of the explanatory variables remains correlated with the transformed error term.

The fixed effects IV estimator addresses this remaining endogeneity by employing instruments w_{it} that satisfy the transformed orthogonality conditions. Let $\tilde{w}_{it} = w_{it} - \bar{w}_i$ represent the within-transformed instruments. The key identifying assumptions for the fixed effects IV estimator are: first, instrument relevance in the within dimension, requiring $E[\tilde{w}_{it}\tilde{x}'_{it}] \neq 0$; and second, instrument exogeneity with respect to the idiosyncratic error term, demanding $E[\tilde{w}_{it}\tilde{\epsilon}_{it}] = 0$.

The mathematical structure of the fixed effects IV estimator can be expressed using matrix notation. Let $M = I_T - \frac{1}{T}\iota_T\iota_T'$ denote the within-group transformation matrix, where I_T is the $T \times T$ identity matrix and ι_T represents a $T \times 1$ vector of ones. For individual i , the transformed data can be written as:

$$\tilde{Y}_i = MY_i, \quad \tilde{X}_i = MX_i, \quad \tilde{W}_i = MW_i$$

The fixed effects IV estimator is then obtained through two-stage least squares applied to the transformed data:

$$\hat{\beta}_{FEIV} = \left(\sum_{i=1}^N \tilde{X}'_i \tilde{W}_i \left(\sum_{i=1}^N \tilde{W}'_i \tilde{W}_i \right)^{-1} \sum_{i=1}^N \tilde{W}'_i \tilde{X}_i \right)^{-1} \sum_{i=1}^N \tilde{X}'_i \tilde{W}_i \left(\sum_{i=1}^N \tilde{W}'_i \tilde{W}_i \right)^{-1} \sum_{i=1}^N \tilde{W}'_i \tilde{Y}_i$$

This expression can be simplified by recognizing that the fixed effects IV estimator is equivalent to applying instrumental variables to the pooled within-transformed data [10]. The estimator can be written more compactly as:

$$\hat{\beta}_{FEIV} = (\tilde{X}' P_{\tilde{W}} \tilde{X})^{-1} \tilde{X}' P_{\tilde{W}} \tilde{Y}$$

where $P_{\tilde{W}} = \tilde{W}(\tilde{W}'\tilde{W})^{-1}\tilde{W}'$ represents the projection matrix onto the space spanned by the within-transformed instruments.

The asymptotic properties of the fixed effects IV estimator depend on the assumptions regarding the behavior of the cross-sectional and time dimensions. Under standard regularity conditions,

including the assumption that instruments are strong in the within dimension, the estimator satisfies:

$$\sqrt{NT}(\hat{\beta}_{FEIV} - \beta_0) \xrightarrow{d} N(0, \sigma^2 \text{plim}_{N,T \rightarrow \infty}(N^{-1} \sum_{i=1}^N \tilde{X}'_i P_{\tilde{W}_i} \tilde{X}_i)^{-1})$$

where $\sigma^2 = E[\tilde{\epsilon}_{it}^2]$ represents the variance of the transformed idiosyncratic error term.

The efficiency of the fixed effects IV estimator relative to other instrumental variable approaches depends on several factors. When individual effects are truly fixed and the instruments are strong in the within dimension, the FEIV estimator typically provides consistent and efficient estimates [11]. However, the within transformation can exacerbate weak instrument problems if the instruments exhibit limited time-series variation or if their correlation with the endogenous variables is primarily driven by cross-sectional rather than time-series variation.

The choice of instruments in fixed effects IV applications requires careful consideration of the identifying variation remaining after the within transformation. External instruments such as policy changes, weather shocks, or other exogenous variables that vary over time and across individuals can provide powerful identification. However, researchers must ensure that these instruments are not only relevant in the within dimension but also satisfy the strict exogeneity requirement with respect to the idiosyncratic error term.

One important consideration in fixed effects IV estimation is the potential loss of information due to the within transformation [12]. Variables that are perfectly correlated with individual fixed effects are eliminated from the analysis, and slowly-moving variables may suffer from reduced identifying variation. This issue becomes particularly problematic when the instruments themselves exhibit limited within-individual variation over time.

The diagnostic testing for fixed effects IV models involves several key components. First-stage F-statistics can be computed using the within-transformed data to assess instrument strength in the relevant dimension. The Kleibergen-Paap weak identification test provides more robust assessments of instrument strength that account for potential heteroskedasticity and serial correlation in the error terms. Overidentification tests, such as the Sargan-Hansen test, can be employed to examine whether the instruments satisfy the required orthogonality conditions. [13]

The fixed effects IV approach also faces challenges when dealing with dynamic panel data models that include lagged dependent variables. In such cases, the lagged dependent variable becomes mechanically correlated with the transformed error term, creating an additional source of endogeneity that cannot be addressed through the within transformation alone. This limitation has motivated the development of alternative approaches, such as system GMM estimators, that can better handle dynamic specifications.

4 Random Effects Instrumental Variables

The random effects instrumental variables approach provides an alternative framework for addressing endogeneity in panel data models while maintaining efficiency gains through the modeling of unobserved heterogeneity as random rather than fixed. This method requires stronger identifying assumptions than fixed effects approaches but can yield more efficient estimates when these assumptions are satisfied, particularly in situations where time-invariant variables are of substantive interest or when the within-group variation is limited. [14]

The mathematical foundation of the random effects IV estimator begins with the specification of the panel data model as $y_{it} = \beta' x_{it} + \gamma' z_{it} + \mu_i + \epsilon_{it}$, where the individual effects μ_i are assumed to be independently and identically distributed with $\mu_i \sim (0, \sigma_\mu^2)$ and independent of the idiosyncratic error terms $\epsilon_{it} \sim (0, \sigma_\epsilon^2)$. The key distinction from fixed effects approaches is the assumption that $E[\mu_i | x_{it}, z_{it}] = 0$ for all i and t , which allows for the identification of time-invariant variables but requires the stronger assumption that individual effects are uncorrelated with all explanatory variables.

The endogeneity problem in random effects models can arise from correlation between the explanatory variables and either the individual effects μ_i or the idiosyncratic error terms ϵ_{it} . When $E[x_{it}\mu_i] \neq 0$, the random effects assumption is violated, and consistent estimation requires either moving to a fixed effects specification or finding instruments that can address this correlation. When $E[x_{it}\epsilon_{it}] \neq 0$ but $E[x_{it}\mu_i] = 0$, instrumental variable techniques can be applied while maintaining the random effects framework.

The random effects IV estimator employs a generalized least squares transformation that accounts for the error component structure while incorporating instrumental variables to address endogeneity. The composite error term $v_{it} = \mu_i + \epsilon_{it}$ has variance-covariance structure:

$$E[v_{it}v_{is}] = \begin{cases} \sigma_\mu^2 + \sigma_\epsilon^2 & \text{if } t = s \\ \sigma_\mu^2 & \text{if } t \neq s \end{cases}$$

This error structure necessitates a transformation that accounts for the serial correlation induced by the presence of individual effects. The generalized least squares transformation is given by:

$$y_{it}^* = y_{it} - \theta \bar{y}_i, \quad x_{it}^* = x_{it} - \theta \bar{x}_i$$

where $\theta = 1 - \sqrt{\frac{\sigma_\epsilon^2}{\sigma_\epsilon^2 + T\sigma_\mu^2}}$ represents the transformation parameter that depends on the relative variances of the error components.

The random effects IV estimator applies instrumental variables to the GLS-transformed data. Let w_{it} denote the instruments and define $w_{it}^* = w_{it} - \theta \bar{w}_i$ as the transformed instruments. The identifying assumptions for the random effects IV estimator require: first, instrument relevance with respect to the transformed endogenous variables, $E[w_{it}^* x_{it}^{*'}] \neq 0$; second, orthogonality with respect to both error components, $E[w_{it}\epsilon_{it}] = 0$ and $E[w_{it}\mu_i] = 0$; and third, the maintained assumption that individual effects are random, $E[\mu_i|z_{it}] = 0$.

The mathematical expression for the random effects IV estimator can be written as: [15]

$$\hat{\beta}_{REIV} = (X^{*'} P_{W^*} X^*)^{-1} X^{*'} P_{W^*} Y^*$$

where X^* , W^* , and Y^* represent the stacked vectors of GLS-transformed variables, and $P_{W^*} = W^*(W^{*'} W^*)^{-1} W^{*'} \epsilon$ denotes the projection matrix onto the space spanned by the transformed instruments.

The estimation of the transformation parameter θ requires consistent estimates of the variance components σ_μ^2 and σ_ϵ^2 . In the presence of endogenous regressors, these variance components cannot be consistently estimated using standard random effects procedures. Instead, a multi-step approach is typically employed: first, preliminary consistent estimates of the parameters are obtained using an alternative method such as fixed effects IV; second, residuals from this preliminary estimation are used to construct consistent estimates of the variance components; third, the GLS transformation is applied using these estimated variance components; and finally, instrumental variables are applied to the transformed data.

The asymptotic properties of the random effects IV estimator depend critically on the validity of the random effects assumption and the strength of the instruments. Under standard regularity conditions and assuming that the random effects assumption holds, the estimator satisfies:

$$\sqrt{NT}(\hat{\beta}_{REIV} - \beta_0) \xrightarrow{d} N(0, \sigma_v^2 \text{plim}_{N,T \rightarrow \infty} (N^{-1} X^{*'} P_{W^*} X^*)^{-1})$$

where σ_v^2 represents the variance of the GLS-transformed composite error term. [16]

The efficiency comparison between random effects IV and fixed effects IV estimators reveals important trade-offs. When the random effects assumption is valid, the REIV estimator typically dominates the FEIV estimator in terms of asymptotic efficiency because it utilizes both between and within variation in the data. However, when individual effects are correlated with explanatory variables, the REIV estimator becomes inconsistent while the FEIV estimator remains consistent.

The Hausman test provides a framework for testing the validity of the random effects assumption in the presence of endogenous regressors. The test statistic compares the random effects IV and fixed effects IV estimates: [17]

$$H = (\hat{\beta}_{FEIV} - \hat{\beta}_{REIV})' [V(\hat{\beta}_{FEIV}) - V(\hat{\beta}_{REIV})]^{-1} (\hat{\beta}_{FEIV} - \hat{\beta}_{REIV})$$

Under the null hypothesis that the random effects assumption is valid, this statistic follows a chi-squared distribution with degrees of freedom equal to the number of parameters being tested.

The implementation of random effects IV estimation faces several practical challenges. The estimation of variance components in the presence of endogenous regressors can be computationally demanding and may require iterative procedures to achieve convergence. The choice of instruments must satisfy the stronger orthogonality conditions required in the random effects framework, as instruments must be uncorrelated with both individual effects and idiosyncratic errors. Additionally, the efficiency gains of random effects IV are most pronounced when there is substantial between-individual variation in the variables of interest, which may not be present in all applications. [18]

The random effects IV approach is particularly attractive in contexts where time-invariant variables are of primary interest or when the within-group variation is insufficient to provide precise estimates. Examples include studies of the returns to education where both time-varying measures of experience and time-invariant measures of ability are relevant, or analyses of firm performance where both time-varying input measures and time-invariant characteristics such as industry affiliation are important.

5 Difference-in-Differences Instrumental Variables

The difference-in-differences instrumental variables approach represents a sophisticated methodology that combines the identification power of quasi-experimental variation with instrumental variable techniques to address both selection bias and endogeneity simultaneously. This approach is particularly valuable in policy evaluation contexts where treatment assignment is not random but varies across individuals and time periods in ways that can be exploited for identification while maintaining robustness to various forms of endogeneity.

The theoretical framework for difference-in-differences IV builds upon the standard difference-in-differences model by incorporating endogenous treatment variables that may be correlated with unobserved determinants of outcomes [19]. Consider the basic setup where y_{it} represents outcomes for individual i at time t , D_{it} denotes a potentially endogenous treatment variable, and T_t represents time period indicators. The model can be expressed as:

$$y_{it} = \alpha + \beta D_{it} + \gamma T_t + \delta_i + \epsilon_{it}$$

where δ_i captures individual fixed effects and ϵ_{it} represents idiosyncratic shocks. The endogeneity problem arises when $E[D_{it}\epsilon_{it}] \neq 0$, indicating that treatment assignment is correlated with unobserved time-varying factors that also affect outcomes.

The difference-in-differences IV estimator addresses this endogeneity by identifying an instrument Z_{it} that affects treatment assignment but is uncorrelated with outcome determinants except through its effect on treatment. The instrument typically exploits policy changes, regulatory variations, or other exogenous shocks that create quasi-experimental variation in treatment assignment across individuals and time periods.

The mathematical structure of the DID-IV estimator can be expressed through a two-stage least squares framework applied to the differenced data. First, consider the first-differenced version of the model:

$$\Delta y_{it} = \beta \Delta D_{it} + \gamma \Delta T_t + \Delta \epsilon_{it}$$

where $\Delta y_{it} = y_{it} - y_{it-1}$ represents the first difference of outcomes, and similar notation applies to other variables. This differencing eliminates time-invariant individual effects, but endogeneity may persist if $E[\Delta D_{it} \Delta \epsilon_{it}] \neq 0$.

The instrument ΔZ_{it} must satisfy two key conditions in the differenced specification: relevance requires $E[\Delta Z_{it} \Delta D_{it}] \neq 0$, indicating that changes in the instrument are correlated with changes in treatment status; and exogeneity demands $E[\Delta Z_{it} \Delta \epsilon_{it}] = 0$, requiring that changes in the instrument are uncorrelated with changes in unobserved outcome determinants.

The DID-IV estimator can be computed through the standard two-stage least squares procedure:

First stage: $\Delta D_{it} = \pi_0 + \pi_1 \Delta Z_{it} + \pi_2 \Delta T_t + u_{it}$

Second stage: $\Delta y_{it} = \widehat{\beta \Delta D_{it}} + \gamma \Delta T_t + \epsilon_{it}$

where $\widehat{\Delta D_{it}}$ represents the predicted values from the first stage regression.

The mathematical expression for the DID-IV estimator in matrix form is: [20]

$$\hat{\beta}_{DID-IV} = (\Delta D' P_{\Delta Z} \Delta D)^{-1} \Delta D' P_{\Delta Z} \Delta y$$

where $P_{\Delta Z} = \Delta Z (\Delta Z' \Delta Z)^{-1} \Delta Z'$ represents the projection matrix onto the space spanned by the first-differenced instruments.

An alternative formulation of the DID-IV estimator exploits the interaction between group membership and time periods to create identifying variation. Consider a setting where individuals are assigned to treatment and control groups, and treatment intensity varies over time. The model can be specified as:

$$y_{it} = \alpha + \beta D_{it} + \gamma_t + \delta_i + \epsilon_{it}$$

where γ_t represents time fixed effects. The instrument is constructed as $Z_{it} = G_i \times T_t$, where G_i indicates group membership and T_t represents time periods. This interaction term captures the differential exposure to treatment across groups and time periods. [21]

The identifying assumption for this interaction-based DID-IV approach is that the interaction between group membership and time periods affects outcomes only through its impact on treatment assignment. Formally, this requires $E[(G_i \times T_t) \epsilon_{it} | G_i, T_t] = 0$, conditional on group and time fixed effects.

The two-way fixed effects DID-IV estimator incorporates both individual and time fixed effects while using the interaction instrument:

$$y_{it} = \alpha + \beta D_{it} + \gamma_t + \delta_i + \epsilon_{it}$$

First stage: $D_{it} = \pi_0 + \pi_1 (G_i \times T_t) + \sum_t \phi_t T_t + \sum_i \psi_i G_i + u_{it}$

The asymptotic properties of the DID-IV estimator follow standard instrumental variable theory, but the interpretation requires careful consideration of the identifying variation. Under regularity conditions, the estimator satisfies:

$$\sqrt{NT}(\hat{\beta}_{DID-IV} - \beta_0) \xrightarrow{d} N(0, \sigma^2 \text{plim}_{N,T \rightarrow \infty} (\Delta D' P_{\Delta Z} \Delta D)^{-1})$$

The efficiency of the DID-IV estimator depends on the strength of the instruments and the amount of identifying variation available after controlling for fixed effects [22]. Strong instruments that generate substantial variation in treatment assignment will yield more precise estimates, while weak instruments may lead to large standard errors and poor finite-sample performance.

The validity of the DID-IV approach rests on several key assumptions beyond the standard instrumental variable requirements. The parallel trends assumption requires that treated and control groups would have followed similar outcome trajectories in the absence of treatment, formally expressed as $E[\Delta\epsilon_{it}|G_i = 1] = E[\Delta\epsilon_{it}|G_i = 0]$. The exclusion restriction demands that the instrument affects outcomes only through its impact on treatment assignment, ruling out direct effects of the instrument on outcomes.

Diagnostic testing for DID-IV models involves several components. Pre-treatment trend analysis can assess the plausibility of the parallel trends assumption by examining whether treated and control groups exhibited similar outcome trajectories before the policy intervention [23]. First-stage F-statistics computed using the interaction instruments provide evidence on instrument strength. Placebo tests using pre-treatment periods or alternative outcomes can help validate the exclusion restriction.

The DID-IV approach is particularly powerful in policy evaluation contexts where treatment assignment is endogenous but varies quasi-experimentally across groups and time periods. Examples include studies of minimum wage effects where policy changes create identifying variation but labor market conditions may be correlated with both wage policies and employment outcomes, or analyses of education policies where program adoption is endogenous but timing varies across jurisdictions in ways that can be exploited for identification.

6 System Generalized Method of Moments

The system generalized method of moments estimator represents one of the most sophisticated approaches to addressing endogeneity in dynamic panel data models, particularly when external instruments are unavailable or weak. This methodology exploits the lagged structure of the data to generate internal instruments while simultaneously addressing the problems of unobserved heterogeneity and dynamic endogeneity that arise in models with lagged dependent variables. [24]

The theoretical foundation of system GMM builds upon the recognition that different transformations of the dynamic panel data model yield distinct sets of moment conditions that can be combined to improve efficiency and address weak instrument problems. Consider the dynamic panel data model:

$$y_{it} = \alpha y_{it-1} + \beta' x_{it} + \gamma' z_{it} + \mu_i + \epsilon_{it}$$

where y_{it-1} represents the lagged dependent variable, x_{it} denotes potentially endogenous explanatory variables, z_{it} represents predetermined variables, μ_i captures individual fixed effects, and ϵ_{it} denotes idiosyncratic innovations.

The first-differenced transformation eliminates individual fixed effects but creates correlation between the transformed lagged dependent variable and the transformed error term. Specifically, $\Delta y_{it-1} = y_{it-1} - y_{it-2}$ is correlated with $\Delta\epsilon_{it} = \epsilon_{it} - \epsilon_{it-1}$ because both contain ϵ_{it-1} . This mechanical correlation necessitates the use of instrumental variables even for the lagged dependent variable.

The key insight underlying system GMM is that lagged levels of variables can serve as instruments for equations in first differences, while lagged differences can serve as instruments for equations in levels [25]. For the first-differenced equation, moment conditions can be formed using lagged levels as instruments:

$$E[y_{it-s}\Delta\epsilon_{it}] = 0 \text{ for } s \geq 2 \quad E[x_{it-s}\Delta\epsilon_{it}] = 0 \text{ for } s \geq 2$$

These moment conditions are valid under the assumption that the idiosyncratic errors ϵ_{it} are not serially correlated and that the initial conditions satisfy appropriate stationarity requirements.

For the levels equation, additional moment conditions can be constructed using lagged first differences as instruments:

$$E[\Delta y_{it-1}(\mu_i + \epsilon_{it})] = 0 \quad E[\Delta x_{it-1}(\mu_i + \epsilon_{it})] = 0$$

These moment conditions require the stronger assumption that the first differences of the variables are uncorrelated with the individual fixed effects, which holds when the initial deviations from long-run equilibrium are uncorrelated with the individual effects.

The mathematical framework for system GMM combines these two sets of moment conditions into a unified estimation procedure. Let $\Delta y_{it}^* = \Delta y_{it} - \alpha \Delta y_{it-1} - \beta' \Delta x_{it} - \gamma' \Delta z_{it}$ represent the first-differenced residual and $y_{it}^* = y_{it} - \alpha y_{it-1} - \beta' x_{it} - \gamma' z_{it} - \mu_i$ denote the levels residual. The system GMM estimator is based on the stacked moment conditions: [26]

$$E \begin{bmatrix} W_{it}^\Delta \Delta y_{it}^* \\ W_{it}^L y_{it}^* \end{bmatrix} = 0$$

where W_{it}^Δ represents the instrument matrix for the first-differenced equation and W_{it}^L denotes the instrument matrix for the levels equation.

The construction of the instrument matrices requires careful consideration of the timing assumptions and the availability of lagged values. For the first-differenced equation, the instrument matrix typically takes the form:

$$W_{it}^\Delta = [y_{it-2}, y_{it-3}, \dots, y_{i1}, x_{it-2}, x_{it-3}, \dots, x_{i1}, z_{it-1}, z_{it-2}, \dots, z_{i1}]$$

For the levels equation, the instrument matrix is constructed using lagged first differences:

$$W_{it}^L = [\Delta y_{it-1}, \Delta x_{it-1}, \Delta z_{it}]$$

The system GMM estimator is obtained by minimizing the quadratic form:

$$\hat{\theta}_{SYS} = \arg \min_{\theta} g_N(\theta)' \Omega_N^{-1} g_N(\theta)$$

where $g_N(\theta)$ represents the stacked sample moment vector and Ω_N denotes the weighting matrix that accounts for the heteroskedasticity and serial correlation structure of the stacked system.

The optimal weighting matrix for system GMM has a block diagonal structure: [27]

$$\Omega^* = \begin{bmatrix} \Omega_{\Delta\Delta} & 0 \\ 0 & \Omega_{LL} \end{bmatrix}$$

where $\Omega_{\Delta\Delta} = E[W_{it}^\Delta \Delta \epsilon_{it} \Delta \epsilon_{it}' W_{it}^\Delta']$ and $\Omega_{LL} = E[W_{it}^L (\mu_i + \epsilon_{it})^2 W_{it}^L']$ represent the variance-covariance matrices for the first-differenced and levels equations, respectively.

The two-step system GMM estimator implements this optimal weighting through an iterative procedure. In the first step, moment conditions are estimated using an identity weighting matrix or a weighting matrix that assumes homoskedasticity and no serial correlation. The residuals from this first-step estimation are then used to construct a consistent estimate of the optimal weighting matrix, which is employed in the second-step estimation.

The asymptotic properties of the system GMM estimator depend on the validity of the moment conditions and the behavior of the cross-sectional and time dimensions. Under standard regularity conditions, the estimator satisfies: [28]

$$\sqrt{N}(\hat{\theta}_{SYS} - \theta_0) \xrightarrow{d} N(0, (G' \Omega^{-1} G)^{-1})$$

where $G = E[\frac{\partial g_{it}}{\partial \theta}]$ represents the gradient matrix of the moment conditions. This asymptotic normality result assumes that the time dimension T is fixed while the cross-sectional dimension N approaches infinity.

The efficiency gains of system GMM relative to first-differenced GMM arise from the additional moment conditions provided by the levels equation. These additional restrictions are particularly valuable when the lagged levels are weak instruments for the first-differenced equation, a problem that commonly occurs when the dependent variable is highly persistent. The levels equation provides alternative identifying variation that can substantially improve precision.

The validity of system GMM rests on several key assumptions beyond those required for first-differenced GMM [29]. The stationarity assumption requires that the initial observations are drawn from the stationary distribution of the process, ensuring that the correlation between lagged differences and individual effects vanishes. The mean stationarity condition can be expressed as $E[y_{i1}\mu_i] = E[y_{i2}\mu_i] = \dots = E[y_{iT}\mu_i]$, which holds when deviations from individual-specific means are uncorrelated with the individual effects themselves.

Diagnostic testing for system GMM involves several components designed to assess the validity of the identifying assumptions and the adequacy of the specification. The Arellano-Bond test for serial correlation examines whether the first-differenced residuals exhibit second-order serial correlation, which would invalidate the moment conditions based on lagged levels. The test statistic is constructed as:

$$AR(2) = \frac{\sum_{i=1}^N \sum_{t=4}^T \Delta\hat{\epsilon}_{it} \Delta\hat{\epsilon}_{it-2}}{\sqrt{\text{Var}(\sum_{i=1}^N \sum_{t=4}^T \Delta\hat{\epsilon}_{it} \Delta\hat{\epsilon}_{it-2})}}$$

The Hansen test of overidentifying restrictions provides a specification test for the validity of the instrument set [30]. This test examines whether the sample moment conditions are sufficiently close to zero, as required by the population orthogonality conditions:

$$J = N \cdot g_N(\hat{\theta})' \hat{\Omega}_N^{-1} g_N(\hat{\theta}) \xrightarrow{d} \chi^2(J - K)$$

where J represents the number of moment conditions and K denotes the number of parameters.

The difference-in-Hansen test allows for testing the validity of subsets of instruments by comparing the Hansen statistics from restricted and unrestricted specifications. This test is particularly useful for examining whether the additional moment conditions from the levels equation are valid:

$$\Delta J = J_{\text{unrestricted}} - J_{\text{restricted}} \xrightarrow{d} \chi^2(\Delta J)$$

where ΔJ represents the difference in the number of overidentifying restrictions between the two specifications.

The finite-sample performance of system GMM can be adversely affected by instrument proliferation, particularly when the time dimension is large relative to the cross-sectional dimension [31]. The number of instruments grows quadratically with the time dimension, potentially leading to overfitting and weak identification problems. Several strategies have been developed to address this issue, including instrument reduction techniques that limit the number of lags used as instruments and methods that combine instruments to reduce dimensionality.

The collapse option in system GMM estimation creates one instrument for each variable and lag distance rather than one instrument for each time period, variable, and lag distance. This approach can substantially reduce the instrument count while maintaining the essential identifying variation. The mathematical implementation involves creating instrument matrices where each column corresponds to a specific lag rather than a specific time period and lag combination. [32]

System GMM has found widespread application in empirical economics, particularly in studies of firm dynamics, economic growth, and financial development. The methodology is especially valuable when analyzing highly persistent dependent variables where fixed effects estimators may suffer from weak identification and when external instruments are unavailable or suspect. However, the validity of the approach depends critically on the stationarity assumptions and the absence of serial correlation, requirements that must be carefully assessed in empirical applications.

7 Comparative Analysis and Performance Evaluation

The comparative analysis of instrumental variable approaches in panel data models requires a comprehensive evaluation of their theoretical properties, identifying assumptions, and empirical performance under various data generating processes. Each methodology embodies specific trade-offs between robustness, efficiency, and the strength of maintained assumptions, making the choice among approaches critically dependent on the characteristics of the particular empirical application and the nature of the underlying data generating process. [33]

The theoretical comparison begins with an examination of the identifying assumptions underlying each approach. Fixed effects instrumental variables requires the weakest assumptions regarding the correlation between individual effects and explanatory variables, allowing for arbitrary correlation patterns while maintaining consistency through the within transformation. However, this robustness comes at the cost of eliminating all time-invariant variation and potentially exacerbating weak instrument problems when the identifying variation is primarily cross-sectional rather than temporal.

Random effects instrumental variables maintains efficiency advantages by exploiting both between and within variation, but requires the stronger assumption that individual effects are uncorrelated with all explanatory variables. This assumption becomes particularly restrictive in applications where unobserved individual characteristics are likely to be systematically related to the variables of interest [34]. The efficiency gains are most pronounced when time-invariant variables are of primary interest or when within-group variation is limited.

The mathematical comparison of asymptotic variances reveals the efficiency ranking among estimators when their respective assumptions are satisfied. Under the random effects assumption, the asymptotic variance matrix of the REIV estimator is given by:

$$\text{Avar}(\hat{\beta}_{REIV}) = \sigma_v^2 (X^{*'} P_{W^*} X^*)^{-1}$$

while the asymptotic variance of the FEIV estimator is:

$$\text{Avar}(\hat{\beta}_{FEIV}) = \sigma_e^2 (\tilde{X}' P_{\tilde{W}} \tilde{X})^{-1}$$

The efficiency comparison depends on the relative magnitudes of σ_v^2 and σ_e^2 , as well as the differences in the transformed design matrices. Generally, when the random effects assumptions are valid, the REIV estimator achieves lower asymptotic variance due to its utilization of additional identifying variation. [35]

Difference-in-differences instrumental variables offers a middle ground by combining quasi-experimental identification with robustness to certain forms of endogeneity. The approach requires the parallel trends assumption, which is often more plausible than the random effects assumption but stronger than the requirements for fixed effects approaches. The efficiency of DID-IV depends critically on the strength of the interaction instruments and the extent of differential treatment exposure across groups and time periods.

System GMM represents the most complex approach, requiring stationarity assumptions and specific timing restrictions that may be difficult to verify in practice. However, when these assumptions are satisfied, system GMM can provide substantial efficiency gains, particularly in dynamic specifications where external instruments are weak or unavailable [36]. The mathematical expression for the asymptotic variance incorporates information from both first-differenced and levels moment conditions:

$$\text{Avar}(\hat{\theta}_{SYS}) = (G' \Omega^{-1} G)^{-1}$$

where the gradient matrix G and weighting matrix Ω reflect the combined moment conditions from both transformations.

The robustness comparison reveals important differences in sensitivity to violations of identifying assumptions. Fixed effects IV maintains consistency even when individual effects are correlated with explanatory variables, but may suffer from bias when instruments are weak in the within dimension. Random effects IV becomes inconsistent when the individual effects assumption is

violated, but typically provides more precise estimates when the assumption holds [37]. System GMM can be sensitive to violations of stationarity assumptions and may suffer from finite-sample bias when the instrument set is large relative to the sample size.

The empirical performance evaluation requires consideration of finite-sample properties, which may differ substantially from asymptotic predictions. Monte Carlo studies have revealed that fixed effects IV can exhibit substantial bias when instruments are weak in the within dimension, particularly when the time dimension is small. Random effects IV typically displays better finite-sample performance when its assumptions are satisfied but can exhibit large bias when individual effects are correlated with explanatory variables.

System GMM finite-sample performance depends critically on the persistence of the dependent variable and the strength of the internal instruments. When the dependent variable is highly persistent, lagged levels may be weak instruments for first differences, leading to substantial finite-sample bias [38]. The system estimator partially addresses this problem by combining moment conditions from levels and differences, but performance can still be poor when stationarity assumptions are violated.

The diagnostic testing capabilities vary significantly across approaches. Fixed effects IV can employ standard weak instrument tests applied to within-transformed data, providing straightforward assessment of instrument strength. Random effects IV requires additional testing of the random effects assumption through Hausman-type tests, complicating the diagnostic process. System GMM offers the most comprehensive set of diagnostic tests, including serial correlation tests, overidentification tests, and difference-in-Hansen tests for subset validity. [39]

The computational complexity increases substantially from fixed effects IV to system GMM. Fixed effects IV requires only standard two-stage least squares applied to transformed data, making it computationally straightforward even in large samples. Random effects IV involves additional variance component estimation but remains relatively simple. System GMM requires iterative optimization procedures and careful construction of instrument matrices, making it computationally demanding, particularly when the time dimension is large.

The choice among approaches depends on several key factors [40]. When external instruments are strong and time-invariant effects are the primary concern, fixed effects IV provides a robust and straightforward solution. When time-invariant variables are of interest and the random effects assumption is plausible, random effects IV offers efficiency advantages. When quasi-experimental variation is available and parallel trends assumptions are credible, DID-IV provides powerful identification. When external instruments are weak or unavailable and dynamic specifications are required, system GMM may be the only viable approach despite its complexity.

The practical guidance for empirical researchers involves a systematic approach to method selection [41]. Begin with an assessment of the data generating process and the likely sources of endogeneity. Evaluate the availability and strength of external instruments through first-stage diagnostics. Test the plausibility of random effects assumptions using Hausman tests. Assess the credibility of parallel trends assumptions through pre-treatment trend analysis. Consider the computational resources available and the complexity of the required specification.

The recent developments in the literature have focused on addressing some of the limitations of these approaches [42]. Weak instrument robust inference methods provide more reliable statistical inference when instruments are weak. Instrument selection procedures help address the proliferation problem in system GMM. Robust standard error methods account for various forms of heteroskedasticity and serial correlation. These advances continue to expand the toolkit available for addressing endogeneity in panel data applications.

8 Applications and Empirical Considerations

The practical implementation of instrumental variable approaches in panel data models requires careful attention to a range of empirical considerations that extend beyond the theoretical properties of the estimators [43]. These considerations include data requirements, specification

choices, diagnostic procedures, and interpretation of results, all of which play crucial roles in determining the success of the empirical analysis and the credibility of the resulting causal inferences.

The data requirements for different instrumental variable approaches vary significantly in terms of both the cross-sectional and time dimensions. Fixed effects IV methods typically require longer time series for each individual to provide sufficient within-variation for identification, particularly when the explanatory variables exhibit high persistence. The minimum effective time dimension depends on the nature of the variables and the strength of the instruments, but panels with fewer than five time periods often provide insufficient variation for reliable estimation.

Random effects IV approaches can work effectively with shorter time series because they exploit both between and within variation, but they require larger cross-sectional dimensions to provide precise estimates of the variance components [44]. The trade-off between time and cross-sectional dimensions becomes particularly important when the panel is unbalanced, as missing observations can substantially reduce the effective sample size and complicate the variance component estimation.

System GMM methods face unique data requirements due to their reliance on lagged instruments. The approach requires a minimum of four time periods to implement the basic specification, but longer time series are generally preferable to provide more moment conditions and improve efficiency. However, very long time series can lead to instrument proliferation problems, necessitating careful instrument selection strategies.

The specification of the instrument set represents one of the most critical decisions in empirical applications [45]. For external instrument approaches, the choice requires balancing instrument strength against the plausibility of the exclusion restriction. Strong instruments that are highly correlated with the endogenous variables may be more likely to have direct effects on the outcome, potentially violating the exclusion restriction. Weak instruments that clearly satisfy the exclusion restriction may provide insufficient identification power for reliable estimation.

The mathematical framework for assessing instrument strength involves examining the first-stage regression statistics. The F-statistic for joint significance of the instruments should exceed conventional thresholds, typically 10 for single endogenous variable cases. For multiple endogenous variables, more sophisticated weak identification tests such as the Cragg-Donald statistic provide appropriate diagnostics [46]. The effective F-statistic can be computed as:

$$F_{\text{eff}} = \frac{(SSR_r - SSR_u)/q}{SSR_u/(n-k)}$$

where SSR_r and SSR_u represent the sum of squared residuals from restricted and unrestricted first-stage regressions, q denotes the number of instruments, n represents the sample size, and k denotes the number of regressors.

The treatment of unbalanced panels requires special consideration in instrumental variable applications. Missing observations can arise from attrition, non-response, or the natural entry and exit of units from the panel. The pattern of missingness may be related to both the instruments and the outcomes, potentially introducing selection bias that compounds the original endogeneity problem. [47]

Fixed effects IV approaches handle unbalanced panels relatively straightforwardly through the within transformation, but the effectiveness depends on having sufficient observations per individual after transformation. Random effects IV methods require more careful treatment of unbalanced data, particularly in the variance component estimation stage. System GMM faces particular challenges with unbalanced panels because the moment conditions depend on specific lag structures that may not be available for all observations.

The specification of lag structures in dynamic panel models requires careful consideration of both theoretical and empirical factors. The inclusion of multiple lags of the dependent variable can improve the fit but complicates the identification strategy and increases the instrument

requirements [48]. The Akaike and Bayesian information criteria provide guidance on lag selection, but theoretical considerations should take precedence when available.

The mathematical representation of lag selection involves comparing models with different lag structures:

$$y_{it} = \sum_{j=1}^p \alpha_j y_{it-j} + \beta' x_{it} + \gamma' z_{it} + \mu_i + \epsilon_{it}$$

where p represents the maximum lag length. The optimal lag length can be selected by minimizing information criteria or through sequential testing procedures that examine the significance of additional lags.

The treatment of time effects represents another important specification choice. Many economic time series exhibit common trends or cyclical patterns that affect all individuals similarly [49]. Failing to account for these common factors can lead to spurious correlation between instruments and outcomes, violating the exclusion restriction. Time fixed effects can be included in most instrumental variable specifications:

$$y_{it} = \beta' x_{it} + \gamma' z_{it} + \tau_t + \mu_i + \epsilon_{it}$$

where τ_t represents time-specific effects. However, the inclusion of time effects may absorb some of the identifying variation, particularly in DID-IV applications where the instruments are constructed from time-varying policy changes.

The robustness assessment of instrumental variable results requires a comprehensive battery of diagnostic tests and sensitivity analyses [50]. Beyond the standard weak identification and overidentification tests, researchers should examine the stability of results across different specifications, sample periods, and instrument sets. Placebo tests using alternative outcomes or time periods can provide evidence on the validity of the identifying assumptions.

The interpretation of instrumental variable estimates requires careful attention to the local average treatment effect interpretation. IV estimates identify causal effects for the subset of individuals whose treatment status is affected by the instrument, known as compliers. This local average treatment effect may differ from the average treatment effect for the entire population, particularly when treatment effects are heterogeneous across individuals. [51]

The mathematical expression for the local average treatment effect in the context of panel data IV models is:

$$\beta_{LATE} = \frac{E[y_{it}(1) - y_{it}(0) | D_{it}(Z_{it}=1) > D_{it}(Z_{it}=0)]}{\Pr[D_{it}(Z_{it}=1) > D_{it}(Z_{it}=0)]}$$

where $y_{it}(d)$ represents potential outcomes under treatment status d , $D_{it}(z)$ denotes potential treatment status under instrument value z , and the conditioning is on the complier population.

The reporting of instrumental variable results should include comprehensive information about the first stage, reduced form, and second stage relationships. The first stage results demonstrate instrument strength and relevance, the reduced form results show the overall relationship between instruments and outcomes, and the second stage provides the causal parameter estimates. Standard errors should be computed using methods that account for the two-step nature of the estimation procedure.

The sensitivity analysis for instrumental variable results should examine robustness to various assumptions and specifications [52]. This includes testing different instrument sets, varying the lag structure in dynamic models, including different sets of control variables, and examining subsamples of the data. Monte Carlo sensitivity analysis can be particularly valuable for assessing robustness to violations of key assumptions.

The presentation of diagnostic test results requires careful interpretation of the test statistics and their implications for the validity of the empirical strategy. Weak identification tests should be reported with appropriate critical values, overidentification tests should be interpreted in light of the possibility that all instruments may be invalid, and serial correlation tests in dynamic models should be evaluated against the theoretical predictions of the model.

The policy implications of instrumental variable results require careful consideration of the external validity and generalizability of the findings. The local average treatment effect interpretation means that the results may not apply to policy interventions that affect different populations or operate through different mechanisms [53]. The specific characteristics of the complier population should be discussed when possible to aid in the interpretation of the policy relevance.

9 Conclusion

This comprehensive analysis of instrumental variable approaches in linear panel data models reveals the sophisticated nature of addressing endogeneity concerns while maintaining the advantages of longitudinal data structures. The comparison of fixed effects instrumental variables, random effects instrumental variables, difference-in-differences instrumental variables, and system generalized method of moments estimators demonstrates that each approach embodies distinct theoretical foundations, identifying assumptions, and empirical performance characteristics that make them suitable for different research contexts and data generating processes.

The mathematical exposition throughout this paper establishes that the choice among instrumental variable methods depends critically on the interaction between the nature of unobserved heterogeneity, the sources of endogeneity, the availability of valid instruments, and the characteristics of the panel data structure. Fixed effects IV approaches provide robust control for time-invariant unobserved heterogeneity but may suffer from weak identification when instruments lack sufficient time-series variation [54]. Random effects IV methods offer efficiency gains through utilization of both between and within variation but require stronger assumptions about the correlation between individual effects and explanatory variables.

The analysis of difference-in-differences instrumental variables reveals its particular strength in policy evaluation contexts where quasi-experimental variation can be combined with instrumental variable techniques to address both selection bias and endogeneity simultaneously. This approach requires careful attention to parallel trends assumptions and the construction of credible interaction instruments, but provides powerful identification when these conditions are satisfied.

System GMM emerges as the most technically sophisticated approach, capable of addressing dynamic endogeneity through internal instruments while handling multiple sources of bias. However, this sophistication comes with increased complexity in implementation, stronger stationarity assumptions, and potential sensitivity to instrument proliferation and finite-sample bias [55]. The diagnostic framework for system GMM, including serial correlation tests and overidentification restrictions, provides comprehensive tools for assessing the validity of the identifying assumptions.

The comparative analysis reveals that no single instrumental variable approach dominates across all empirical contexts. Instead, the optimal choice depends on a careful assessment of the specific characteristics of the research question, data structure, and identifying variation available. Fixed effects IV provides a robust baseline when external instruments are strong and time-invariant effects are the primary concern. Random effects IV offers efficiency advantages when its assumptions are credible and time-invariant variables are of interest [56]. Difference-in-differences IV excels in quasi-experimental settings with credible parallel trends assumptions. System GMM becomes essential when external instruments are weak or unavailable and dynamic specifications are required.

The empirical considerations discussed in this paper highlight the importance of careful implementation and diagnostic testing in instrumental variable applications. The assessment of instrument strength, the evaluation of identifying assumptions, and the interpretation of local average treatment effects all require sophisticated understanding of the underlying theoretical frameworks. The finite-sample performance of these estimators can deviate substantially from their asymptotic properties, necessitating careful attention to sample size requirements and diagnostic procedures.

The mathematical frameworks developed throughout this analysis provide a unified foundation for understanding the relationships among different instrumental variable approaches and their

performance characteristics [57]. The derivation of asymptotic variance expressions, the construction of moment conditions, and the specification of identifying assumptions offer researchers the tools necessary to make informed choices among competing methodologies.

Future research directions in this area continue to address the limitations identified in this comparative analysis. The development of weak instrument robust inference methods provides more reliable statistical procedures when identification is marginal. Machine learning approaches to instrument selection offer new tools for addressing the proliferation problem in system GMM applications. The integration of experimental and quasi-experimental evidence with observational panel data methods promises to enhance the credibility of causal inference in complex economic environments. [58]

The policy implications of instrumental variable research in panel data settings extend beyond the specific empirical applications to broader questions about the design of economic policies and the evaluation of their effectiveness. The local average treatment effect interpretation emphasizes the importance of understanding the heterogeneity of treatment effects across different populations and the mechanisms through which policies operate. This understanding is essential for designing effective interventions and predicting their effects in new contexts.

The technological advances in computational methods and the increasing availability of large-scale panel datasets continue to expand the opportunities for applying these sophisticated instrumental variable techniques. However, the fundamental challenges of finding credible instruments and satisfying identifying assumptions remain central to the success of empirical research in this area [59]. The frameworks developed in this paper provide guidance for navigating these challenges while maintaining the rigor necessary for credible causal inference.

The contribution of this analysis to the existing literature lies in its unified mathematical treatment of diverse instrumental variable approaches and its systematic comparison of their theoretical and empirical properties. By establishing a common framework for evaluation, this paper facilitates better understanding of the trade-offs involved in choosing among different methodologies and provides practical guidance for empirical researchers facing endogeneity concerns in panel data applications.

The enduring importance of addressing endogeneity in econometric analysis ensures that instrumental variable methods will remain central to empirical research in economics and related fields. The sophisticated techniques analyzed in this paper represent the current state of the art, but continued methodological development will undoubtedly refine and extend these approaches. The mathematical foundations established here provide a solid basis for understanding both current methods and future innovations in the field of instrumental variable estimation for panel data models. [60]

References

- [1] B. Ershoff, "Intraoperative hydromorphone decreases postoperative pain: an instrumental variable analysis.", *British journal of anaesthesia*, vol. 131, pp. 104–112, 4 2023.
- [2] J. Choi and S. Shen, "Two-sample instrumental-variables regression with potentially weak instruments;," *The Stata Journal: Promoting communications on statistics and Stata*, vol. 19, pp. 581–597, 9 2019.
- [3] Y. Xiao and T. T. Brown, "Moving suicide prevention upstream by understanding the effect of flourishing on suicidal ideation in midlife: an instrumental variable approach.,," *Scientific reports*, vol. 13, pp. 1320–, 1 2023.
- [4] X. Zhou and X. Tang, "Does financing constraints impact the chinese companies' pollutants emissions? evidence from a sample selection bias corrected model based on chinese company-level panel data.,," *Environmental science and pollution research international*, vol. 29, pp. 44119–44134, 2 2022.

- [5] L. Zhang, L. Jiang, and F. Zhang, "Ccus technology, digital economy, and carbon emission efficiency: Evidence from china's provincial panel data.," *Environmental science and pollution research international*, vol. 30, pp. 86395–86411, 7 2023.
- [6] F. Pacheco, R. T. Sánchez, and M. G. Villena, "Estimating local government efficiency using a panel data parametric approach: the case of chilean municipalities," *Applied Economics*, vol. 53, pp. 292–314, 9 2020.
- [7] F. Chen, W. Hu, J. Cai, S. Chen, A. Si, Y. Zhang, and W. Liu, "Instrumental variable-based high-dimensional mediation analysis with unmeasured confounders for survival data in the observational epigenetic study.," *Frontiers in genetics*, vol. 14, pp. 1092489–, 2 2023.
- [8] L. Zhang and C. Wu, "The impact of smart city pilots on haze pollution in china—an empirical test based on panel data of 283 prefecture-level cities," *Sustainability*, vol. 15, pp. 9653–9653, 6 2023.
- [9] A. Zhou and J. Li, "Air pollution and income distribution: evidence from chinese provincial panel data," *Environmental science and pollution research international*, vol. 28, pp. 8392–8406, 10 2020.
- [10] B. K. Frogner, K. Harwood, C. H. A. Andrilla, M. Schwartz, and J. M. Pines, "Physical therapy as the first point of care to treat low back pain: An instrumental variables approach to estimate impact on opioid prescription, health care utilization, and costs.," *Health services research*, vol. 53, pp. 4629–4646, 5 2018.
- [11] F. Wan, D. S. Small, and N. Mitra, "A general approach to evaluating the bias of 2-stage instrumental variable estimators," *Statistics in medicine*, vol. 37, pp. 1997–2015, 3 2018.
- [12] X. Liu, H. Miao, J. R. Behrman, E. Hannum, Z. Liang, and Q. Zhao, "The asian games, air pollution and birth outcomes in south china: an instrumental variable approach," *Economics and human biology*, vol. 44, pp. 101078–, 11 2021.
- [13] C.-S. Lin, H. A. Khan, R.-Y. Chang, W.-C. Liao, Y.-H. Chen, S.-Y. Siao, and T.-F. Hsieh, "A study on the impact of poor medication adherence on health status and medical expense for diabetes mellitus patients in taiwan: A longitudinal panel data analysis," *Medicine*, vol. 99, pp. e20800–, 6 2020.
- [14] Y. Liu and X. Cheng, "Does agro-ecological efficiency contribute to poverty alleviation? an empirical study based on panel data regression.," *Environmental science and pollution research international*, vol. 29, pp. 51892–51908, 3 2022.
- [15] X.-F. Qi and L.-H. Zhou, "Market segmentation and energy efficiency—an empirical study based on china's provincial panel data," *Energy Efficiency*, vol. 13, pp. 1781–1797, 10 2020.
- [16] J. M. Wooldridge, "Simple approaches to nonlinear difference-in-differences with panel data," *The Econometrics Journal*, vol. 26, pp. C31–C66, 8 2023.
- [17] B. Parsons, "Statutory corporate tax rates and income distribution – panel data from 95 countries using driscoll and kraay standard errors and quantile via moments," *Journal of Applied Business and Economics*, vol. 25, 12 2023.
- [18] G. R. Pike and K. Robbins, "Using panel data to identify the effects of institutional characteristics, cohort characteristics, and institutional actions on graduation rates," *Research in Higher Education*, vol. 61, pp. 485–509, 6 2019.
- [19] X. Gan, X. Wen, Y. Lu, and K. Yu, "Economic growth and cardiorespiratory fitness of children and adolescents in urban areas: A panel data analysis of 27 provinces in china, 1985–2014.," *International journal of environmental research and public health*, vol. 16, pp. 3772–, 10 2019.
- [20] H. Shu and Z. Tan, "Improved methods for moment restriction models with data combination and an application to two-sample instrumental variable estimation," *Canadian Journal of Statistics*, vol. 48, pp. 259–284, 12 2019.

- [21] J. W. Miller, D. C. Ganster, and S. E. Griffis, "Leveraging big data to develop supply chain management theory: The case of panel data," *Journal of Business Logistics*, vol. 39, pp. 182–202, 8 2018.
- [22] C. Chen, X. Song, and J. Zhu, "Impact of slack resources on healthcare costs in tertiary and secondary hospitals: a panel data study of public hospitals in beijing from 2015 to 2019," *BMJ open*, vol. 13, pp. e068383–e068383, 4 2023.
- [23] C. Li, Q. He, H. Ji, S. Yu, and J. Wang, "Reexamining the impact of global value chain participation on regional economic growth: New evidence based on a nonlinear model and spatial spillover effects with panel data from chinese cities," *Sustainability*, vol. 15, pp. 13835–13835, 9 2023.
- [24] R. Williams, P. D. Allison, and E. Moral-Benito, "Linear dynamic panel-data estimation using maximum likelihood and structural equation modeling," *The Stata Journal: Promoting communications on statistics and Stata*, vol. 18, pp. 293–326, 6 2018.
- [25] Y. Liu, "Public trust and collaborative governance: an instrumental variable approach," *Public Management Review*, vol. 26, pp. 421–442, 7 2022.
- [26] L. wen Zhang and Z. yi Zhu, "Estimating restricted common structural changes for panel data," *Acta Mathematicae Applicatae Sinica, English Series*, vol. 35, pp. 893–908, 12 2019.
- [27] S. Wang and Q. Cai, "Are home buyers in chinese cities concerned about air quality? using panel data for 70 large and medium-sized cities from 2006 to 2016 as an example," *Journal of Housing and the Built Environment*, vol. 36, pp. 685–704, 7 2020.
- [28] I. A. Mensah, M. Sun, C. Gao, A. Y. Omari-Sasu, H. Sun, B. C. Ampimah, and A. Quarcoo, "Investigation on key contributors of energy consumption in dynamic heterogeneous panel data (dhp_d) model for african countries: fresh evidence from dynamic common correlated effect (dcce) approach," *Environmental science and pollution research international*, vol. 27, pp. 38674–38694, 7 2020.
- [29] J. Mauro, E. H. Kennedy, and D. S. Nagin, "Instrumental variable methods using dynamic interventions," *Journal of the Royal Statistical Society Series A: Statistics in Society*, vol. 183, pp. 1523–1551, 4 2020.
- [30] X. Zhen, J. Chen, X. Sun, Q. Sun, S. Guo, and C. S. Lundborg, "Socioeconomic factors contributing to antibiotic resistance in china: A panel data analysis," *Antibiotics (Basel, Switzerland)*, vol. 10, pp. 994–, 8 2021.
- [31] G. Liu, H. Fang, X. Gong, and F. Wang, "Inclusive finance, industrial structure upgrading and farmers' income: Empirical analysis based on provincial panel data in china," *PloS one*, vol. 16, pp. e0258860–, 10 2021.
- [32] L. Lou, J. Li, and S. Zhong, "Sulfur dioxide (so₂) emission reduction and its spatial spillover effect in high-tech industries: based on panel data from 30 provinces in china," *Environmental science and pollution research international*, vol. 28, pp. 31340–31357, 2 2021.
- [33] Z. Jiang and P. Ding, "Measurement errors in the binary instrumental variable model," *Biometrika*, vol. 107, pp. 238–245, 11 2019.
- [34] Y. Li, H. Wu, K. Shen, Y. Hao, and P. Zhang, "Is environmental pressure distributed equally in china? empirical evidence from provincial and industrial panel data analysis," *The Science of the total environment*, vol. 718, pp. 137363–, 2 2020.
- [35] H. Liu, Y. Pei, and Q. Xu, "Estimation for varying coefficient panel data model with cross-sectional dependence," *Metrika*, vol. 83, pp. 377–410, 8 2019.
- [36] O. J. Abban and Y. Hong-xing, "Investigation on the main contributors of economic growth in a dynamic heterogeneous panel data (dhp_d) in africa: evidence from their income classification," *Environmental science and pollution research international*, vol. 28, pp. 27778–27798, 1 2021.

- [37] J. Gao, D. Wu, Q. Xiao, A. Randhawa, Q. Liu, and T. Zhang, "Green finance, environmental pollution and high-quality economic development-a study based on china's provincial panel data.," *Environmental science and pollution research international*, vol. 30, pp. 31954–31976, 12 2022.
- [38] K. Lee, S. A. Lorch, and D. S. Small, "Sensitivity analyses for average treatment effects when outcome is censored by death in instrumental variable models.," *Statistics in medicine*, vol. 38, pp. 2303–2316, 2 2019.
- [39] W. Fushuai, X. Ruichao, and C. Wenxia, "Research on the impact of financial development on tfp—dea-malmquist index and hansen threshold model based on panel data of shandong province, china," *Journal of Finance Research*, vol. 4, pp. 71–79, 11 2020.
- [40] R. Lin, X. Wang, and J. Huang, "The influence of weather conditions on the covid-19 epidemic evidence from 279 prefecture-level panel data in china," *Environmental research*, vol. 206, pp. 112272–112272, 10 2021.
- [41] C. Sun, W. Zhang, and J. Li, "The impact of ofdi reverse technology spillovers on china's energy intensity: Analysis of provincial panel data," *SSRN Electronic Journal*, 1 2022.
- [42] K. Mishra, A. G. Sam, G. M. Diiro, and M. J. Miranda, "Gender and the dynamics of technology adoption: Empirical evidence from a household-level panel data," *Agricultural Economics*, vol. 51, pp. 857–870, 9 2020.
- [43] C. Choi, H. Jung, and L. Su, "Population structure and housing prices: Evidence from chinese provincial panel data," *Emerging Markets Finance and Trade*, vol. 55, pp. 29–38, 9 2018.
- [44] Z. Lv, L. Wang, and W. Zhang, "An empirical study of factors influencing entrepreneurship using fuzzy logic: Based on provincial panel data," *Journal of Intelligent & Fuzzy Systems*, vol. 40, pp. 8371–8377, 4 2021.
- [45] H. Qiu, M. Carone, E. Sadikova, M. Petukhova, R. C. Kessler, and A. Luedtke, "Rejoinder: Optimal individualized decision rules using instrumental variable methods," *Journal of the American Statistical Association*, vol. 116, pp. 207–209, 1 2021.
- [46] Y. Yang, "Does economic growth induce smoking?—evidence from china," *Empirical Economics*, vol. 63, no. 2, pp. 821–845, 2022.
- [47] B. H. Baltagi, C. Kao, and L. Liu, "Testing for shifts in a time trend panel data model with serially correlated error component disturbances," *Econometric Reviews*, vol. 39, pp. 745–762, 6 2020.
- [48] E. C. Matthay, M. L. Smith, M. M. Glymour, J. S. White, and J. L. Gradus, "Opportunities and challenges in using instrumental variables to study causal effects in nonrandomized stress and trauma research.," *Psychological trauma : theory, research, practice and policy*, vol. 15, pp. 917–929, 10 2022.
- [49] Y. Zhang and Q. Zhou, "Partially linear functional-coefficient dynamic panel data models: sieve estimation and specification testing," *Econometric Reviews*, vol. 40, pp. 983–1006, 8 2021.
- [50] S. Park, S. Song, and S. Lee, "The issue of endogeneity and possible solutions in panel data analysis in the hospitality literature," *Journal of Hospitality & Tourism Research*, vol. 45, pp. 399–418, 5 2020.
- [51] B. Liu, S. Zhan, K. M. Wilson, M. Mazumdar, and L. Li, "The influence of increasing levels of provider-patient discussion on quit behavior: An instrumental variable analysis of a national survey.," *International journal of environmental research and public health*, vol. 18, pp. 4593–, 4 2021.
- [52] S. Li, S. You, D. Liu, and Y. Wang, "National quality and sustainable development: An empirical analysis based on china's provincial panel data," *Sustainability*, vol. 15, pp. 4879–4879, 3 2023.

- [53] M. D. George, J. Y. Hsu, S. Hennessy, L. Chen, F. Xie, J. R. Curtis, and J. F. Baker, "Risk of serious infection with low-dose glucocorticoids in patients with rheumatoid arthritis: An instrumental variable analysis.,," *Epidemiology (Cambridge, Mass.)*, vol. 33, pp. 65–74, 9 2021.
- [54] Z. Khan, M. Shahbaz, M. Ahmad, F. Rabbi, and Y. Siqun, "Total retail goods consumption, industry structure, urban population growth and pollution intensity: an application of panel data analysis for china," *Environmental science and pollution research international*, vol. 26, pp. 32224–32242, 9 2019.
- [55] W. Liu, B. Ye, and Y. Liu, "Marine finance and marine science–tech innovation: An industrial panel data-based analysis," *Journal of Coastal Research*, vol. 106, pp. 276–280, 7 2020.
- [56] S. F. Ackley, F. M. Elahi, and M. M. Glymour, "Instrumental variable meta-analysis of aggregated randomized drug trial data for evaluating proposed target mechanisms.,," *BMJ (Clinical research ed.)*, vol. 372, pp. n346–, 2 2021.
- [57] Y. Ju, N. Tang, and X. Li, "Bayesian local influence analysis of skew-normal spatial dynamic panel data models," *Journal of Statistical Computation and Simulation*, vol. 88, pp. 2342–2364, 4 2018.
- [58] W. Pu and A. Zhang, "Can market reforms curb the expansion of industrial land?—based on the panel data analysis of five national-level urban agglomerations," *Sustainability*, vol. 13, pp. 4472–, 4 2021.
- [59] X. Zhang, D. Wang, H. Lian, and G. Li, "Nonparametric quantile regression for homogeneity pursuit in panel data models," *Journal of Business & Economic Statistics*, vol. 41, pp. 1238–1250, 10 2022.
- [60] P. Stahlmann-Brown and P. Walsh, "Soil moisture and expectations regarding future climate: evidence from panel data," *Climatic Change*, vol. 171, 3 2022.