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Abstract

Particle swarm optimization is a population based stochastic search method in which a set of
agents, called particles, move through a search space under the influence of inertial, cognitive,
and social terms. Many engineered systems motivate implementations where particles can only
exchange information with neighboring agents over a communication network, rather than ac-
cess a globally shared best solution. In such decentralized settings the communication pattern
is often naturally modeled as a directed graph, because information flow can be asymmetric due
to sensing constraints, bandwidth limits, or protocol design. Moreover, the graph structure can
vary over time as agents move, links fail, or scheduling policies change. These factors raise ques-
tions about the convergence and stability of decentralized particle swarm optimization when
interactions are described by directed, time varying topologies. This work develops a graph the-
oretic framework for analyzing the mean dynamics of decentralized particle swarms under such
conditions. The approach models information exchange through products of row stochastic ma-
trices associated with the directed communication graphs and decomposes the swarm state into
components aligned with consensus and disagreement modes. By linearizing around candidate
equilibrium points and separating the contribution of local particle dynamics from the influence
of the evolving topology, the analysis identifies structural conditions on the sequence of graphs
and parameter conditions on the algorithm that together ensure bounded trajectories, asymp-
totic agreement of local best estimates, and convergence of particle positions toward a common
limit. The discussion also addresses robustness to asynchronous updates and imperfect com-
munication, and it provides qualitative design implications for choosing network structures and
parameters in decentralized swarm implementations.

1 Introduction

Table 1. Notation used in the graph-theoretic analysis of decentralized PSO

Symbol Meaning Type Constraints

Gy = (V,Ex) Communication graph at iteration k Directed graph |[V|=N

A Adjacency / weighting matrix of G, N x N matrix Row-stochastic, aI’Fj >0
L Graph Laplacian associated with Gy N x N matrix Ly = Dy — Ag

xK Position of particle i at iteration & Vector in R? xkeQcR?

vk Velocity of particle i at iteration k Vector in R? IVENl < Vinax

p¥ Best position found by particle j up to ¥ Vector in R? f(p¥) = ming<y f(xf)
gf Neighborhood best for particle i at k Vector in RY gk e {pj’F j e NF}




Table 2. Baseline decentralized PSO hyperparameters

Parameter Symbol Value Description

Swarm size N 30 Number of particles

Dimension d 30 Dimension of search space

Inertia weight w 0.729  Trade-off between momentum and exploration
Cognitive coefficient ¢; 1.494  Attraction towards p,’F

Social coefficient co 1.494  Attraction towards gl.k

Maximum iterations Kmax 2000  Stopping criterion

Neighborhood radius R 2 Graph degree in ring topology

Table 3. Summary of main convergence results

Result Assumptions on graphs Assumptions on parameters Cc
Theorem 1 (consensus) B-strongly connected, row-stochastic Ay, w <1,¢1+c2 <4 g/.k
Theorem 2 (stability) Same as Thm. 1 Velocity damping, bounded randomness  {x
Theorem 3 (convergence) Jointly strongly connected in expectation  Step sizes satisfy summability conditions  Pc
Corollary 1 (optimality) Convex f, unique minimizer Conditions of Thm. 3 Cc

Particle swarm optimization is a widely used heuristic for continuous and combinatorial opti-
mization problems in which a collection of particles cooperatively searches for low values of an
objective function [1]. Each particle maintains its current position and velocity, a record of the
best position found by that particle, and access to some form of neighborhood best information.
The canonical algorithm uses a global best position available to every particle at each iteration. In
many modern applications, however, the particles are physical agents or distributed processes
connected by a limited communication network, so that only local information exchanges are
possible. Examples include networks of mobile robots, distributed sensor networks, and large
scale computing systems where global communication would be costly.

In decentralized particle swarm optimization, each particle has access only to information from its
neighbors in the communication graph. Instead of a single global best, each particle computes a
neighborhood best based on the personal bests of itself and its neighbors [2]. This neighborhood
best then influences the velocity update. The evolution of the swarm is therefore coupled to the
communication topology, and the convergence properties depend not only on the algorithm
parameters but also on structural properties of the underlying graph.

Many communication networks in practice are naturally modeled as directed graphs. For in-
stance, a robot may be able to sense or transmit to another robot that cannot reciprocate, or
a sensor may broadcast data without receiving feedback. The resulting interaction graph is di-
rected, with edges indicating available information flows. The graph may also vary over time
due to mobility, interference, link failures, or scheduled communication patterns. These di-
rected, time varying topologies introduce additional complexity into the analysis of decentralized
swarms, because information flow may be transient, asymmetric, and distributed across time [3].

Convergence analysis of particle swarm optimization is challenging even in centralized settings.
The algorithm combines stochastic elements, nonlinear interactions due to the use of personal
and neighborhood bests, and coupling among particles. Many analytical studies rely on simplify-
ing assumptions such as deterministic mean models, reduced dimensionality, or static topologies.
When only local communication is available and the topology is directed and time varying, the
analysis must incorporate tools from graph theory and the theory of products of stochastic ma-
trices to capture how information diffuses through the swarm.

The purpose of this work is to provide a linear systems and graph theoretic viewpoint on decen-
tralized particle swarm optimization over directed, time varying networks. The central idea is to
study a deterministic mean field model obtained by replacing random coefficients with their ex-
pectations and to linearize the dynamics around candidate equilibrium points that correspond to
stationary points of the objective function. The stacked state of all particles is decomposed into
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Table 4. Effect of switching period

Switching period B Joint strong connectivity = Spectral radius bound  Empirical convergence rate

B=1 Always satisfied p<l1 Fast (sublinear with small constant)
B=5 Satisfied p<l Moderate (more iterations needed)
B=10 Marginally satisfied p<1 Slow (occasional stagnation)

B =20 Rarely satisfied p~1 Very slow (frequent stalls)

B =50 Violated p>1 Divergence in some runs

Table 5. Robustness of decentralized PSO to communication imperfections

Failure mode Model Theoretical condition Observed perfor
Packet loss Bernoulli drops with prob. p p < perit for joint connectivity Mild for p < 0.2,
Random link failures Time-varying edge removal Expected B-connectivity Gradual increase
Persistent link failure ~ Removal of fixed edges Remaining graph strongly connected  Negligible if back
Communication delay  Bounded delay Tmax Tmax below stability threshold Slight slowdown,
Quantization noise Uniform quantization of messages = Quantization step sufficiently small Accuracy floor d

consensus modes, in which all particles share the same state, and disagreement modes, which
measure deviations among particles [4]. The communication topology is encoded in row stochas-
tic matrices that map personal best information into neighborhood best information. Products
of these matrices over time determine how disagreement in personal bests evolves.

By separating the analysis into consensus and disagreement components, one can attribute dif-
ferent roles to the algorithm parameters and the communication graphs. The local stability of
particle dynamics around equilibrium points is governed mainly by the inertia and attraction
gains and by the curvature of the objective function. The properties of the directed, time vary-
ing graphs govern how fast and under what conditions the disagreement among particles decays.
Results on the convergence of products of row stochastic matrices associated with jointly rooted
graph sequences provide conditions under which the personal bests and positions of all particles
asymptotically agree [5].

The discussion also considers practical issues such as asynchronous updates, imperfect or de-
layed communication, and random link failures. These phenomena can be modeled by modify-
ing the communication matrices and adding disturbance terms in the linear model. While they
complicate the analysis, they can still be treated within the same general framework, which high-
lights the trade offs among graph connectivity, parameter choices, and robustness margins. The
overall perspective emphasizes that convergence guarantees for decentralized particle swarms
in directed, time varying environments arise from a combined interaction between graph struc-
ture and algorithm dynamics.

2 Graph and Swarm Preliminaries

The interaction structure among particles is modeled by a sequence of directed graphs indexed
by the discrete time variable. Let n denote the number of particles, and letV = {1, ..., n} denote
the set of nodes corresponding to the particles. At each time step k the communication patternis
represented by a directed graph G¢ = (V, &«), where & is the set of directed edges. A directed
edge (/, /) in & means that particle / can receive information from particle j at time k. Self loops
are assumed to be present so that each particle always has access to its own information.

Each graph G, is associated with a nonnegative weight matrix Wy € R"*", whose entries w;; (k)
represent the weight assigned by particle i to information from particle j at time k. The matrix
W is row stochastic, meaning that [6]

D iwy(k) =1
j=1
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for each i. The entry w;;(k) is strictly positive only if (/,/) is an edge of G, and w;;(k) = 0
otherwise. The ith row of W; specifies how particle / forms a weighted combination of neighbor
information at time k. Row stochasticity ensures that the resulting combination is a convex
combination.

The connectivity of the sequence of graphs (G«) plays a central role. Since the graphs are di-
rected and vary with time, it is too restrictive to require strong connectivity at each time step.
Instead, joint connectivity over time intervals is used. A sequence of directed graphs is said to
be repeatedly jointly rooted if there exists a fixed integer L such that, for every starting time s,
the union of edges

s+L
Els,s+L]= US/(
k=s

contains a directed spanning tree [7]. A directed spanning tree is a subgraph with a root node
that has a directed path to every other node. The root of the tree may change with s, or a fixed
root set may be required, depending on the precise condition imposed. Such joint rootedness
conditions guarantee that information from some nodes can influence all others over bounded
time windows.

Row stochastic matrices associated with jointly rooted graph sequences enjoy useful conver-
gence properties. Consider the matrix product

R(k,s)[8] = Wka_l WS

for integers k > s. Under suitable assumptions, such as a uniform positive lower bound on
nonzero entries and repeated joint rootedness of (G¢), the products R (k, s) converge as k grows,
and each product tends to a rank one matrix of the form

I}im R(k,s) =1n,
where 1 is the column vector of dimension n with all entries equal to 1, and n is a stochastic vec-
tor that depends on s. This means that the action of R(k, s) on any initial vector asymptotically
produces a consensus vector proportional to 1. The convergence is usually understood in terms
of the coefficients of ergodicity associated with the row stochastic matrices.

The particle swarm considered here evolves in a d dimensional Euclidean space. The state of
particle / at time k is described by a position vector x;(k) € R? and a velocity vector v;(k) € RY.
There is a common objective function f : RY — R that each particle can evaluate at its current
position. The algorithm maintains for each particle a personal best position p;(k) € R9, defined
as the best position encountered by that particle up to time & according to the objective value.

In a decentralized formulation there is no globally shared best position. Instead, each particle
i maintains a neighborhood best g;(k) € R computed from the personal bests of itself and its
neighbors in the communication graph. A simple weighted aggregation rule is

&i(k)[9] = " wij(k)p; (k)
j=1

which can be seen as applying the weight matrix W, to the vector of personal best positions.
Other rules, such as selecting the best performing neighbor rather than an average, can also be
used, but the weighted rule is convenient for linear modeling.

The classical particle swarm velocity update for particle i at time k involves an inertia term, a
cognitive term attracting the particle toward p;(k), and a social term attracting it toward g; (k).
In the stochastic formulation, two random diagonal matrices with entries uniformly distributed
between 0 and 1 are used to scale the cognitive and social attraction terms. To facilitate analysis,
a mean dynamics approximation replaces these random terms with their expectations and yields
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a deterministic update with constant gains. Let w denote the inertia gain, and let a and 3 denote
nonnegative cognitive and social gains. The mean velocity update takes the form [10]

vilk +1) = wvi(k) + ui(k)
where the attraction input v;(k) is

ui(k) = aaj(k)[11] + Bbi(k)
with

ai(k) = pi(k) = xi(k),  bi(k) = gi(k) = xi(k).
The mean position update is [12]

xi(k +1) = x;(k) + vi(k +1).

These relations define the dynamics of the swarm given the personal and neighborhood bests.
The personal bests p;(k) evolve in a state dependent way, since they are updated when the
current position yields a better objective value. The neighborhood bests g;(k) are determined
at each time step from the personal bests through the communication weights. By stacking the
particle states across all agents, one can express the updates in a compact matrix form amenable
to linear systems analysis [13].

3 Linear Mean Field Modeling and State Decomposition

. [g(k) = (V. 8(k)) J
ajj(k) > 0= (j,i) € E(k)

Figure 1. Directed interaction graph G (k) encoding which decentralized particle swarm
agents exchange information at iteration k. Each node is a particle (icons) that maintains its
own position and best value, while directed edges specify the flow of neighbor-best
information and can be highly asymmetric due to communication constraints.

To analyze the collective behavior of the swarm it is convenient to introduce stacked vectors that
aggregate the states of all particles into single high dimensional vectors. Define

Xl(k) Vl(k)
x(k)=| : |er",  pavk)=| : |er™
xn(k) va(k)

Similarly, define the stacked personal best vector

p1(k)
plk) = : e R,
pn(k)[15]

5/19



o k,k+1,...

Figure 2. Sequence of directed communication graphs G(k), G(k+1), G(k+2) for a
decentralized particle swarm. Edges can appear or disappear over time due to fading or
switching links, yet graph-theoretic convergence is guaranteed when the union of graphs over
sufficiently long time windows remains strongly connected.

o decentralized agent i

neighbor info y;‘

incoming (xj’.(, Vf) velocity update v}

|
I 3 position update xf“ —% broadcast (X;(+1,p;(+1)
\

k+1

i

personal best p

Figure 3. Local particle swarm optimization update executed by agent / using only directed
neighbor information. Incoming states and neighbor-best values are aggregated to update the
velocity, which in turn updates the position and personal best. Each agent runs the same
lightweight pipeline and only broadcasts compact summaries of its state, enabling fully
decentralized operation over a time-varying directed graph.

The neighborhood best vector g(k) € R is obtained by applying the communication weights
to p(k). Let Iy denote the d x d identity matrix. The matrix that maps p(k) into g(k) can be
written using the Kronecker product as

P =W Iy
so that
g(k) = Pep(k).

The mean update of velocities can be written in stacked form. Define diagonal block matrices
[16]

Q =wlpy, Ac = alyy, As = BIpq.

These matrices represent the inertial, cognitive, and social gains acting identically on each coor-
dinate and each particle. The attraction input for the stacked velocity vector is

u(k) = Ac(p(k) = x(k)) + As(g (k) = x(k))[17].
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o decentralized trajectories under graph-theoretic assumptions

particle position in state space

Figure 4. Tllustration of swarm positions evolving over iterations in a decentralized setting.
Each icon corresponds to a particle’s state projected on a scalar coordinate, and the
highlighted band marks the asymptotic consensus region predicted by the graph-theoretic
convergence guarantees. Directed, time-varying information flow ensures that all particles are
ultimately driven toward this common region.

Q=

G(k)

stochastic matrix W (k), Laplacian L(k) xK — x* forall i

i

p(M) < 1, Lyapunov decrease

Figure 5. Graph-theoretic convergence pipeline for decentralized particle swarm optimization.

A directed interaction graph at each iteration induces stochastic matrices or Laplacians whose

joint spectral properties encode contraction of disagreement dynamics. Bounding the spectral

radius of an associated error operator (via p(M) < 1 or Lyapunov inequalities) leads directly

to global convergence of all swarm positions to a common limit point despite the directed and
time-varying topology.

Thus the stacked velocity update is

vik +1) = Qv(k) + u(k)
and substituting the expression for u(k) yields

vk + 1) = Qu(k)[18] + Ac(p(k) — x(K)) + As(g (k) - x(K)).
The stacked position update is

x(k+1)=x(k)+v(k+1).
The communication topology enters through g(k) = Pcp(k). The pair (x(k), v(k)) thus evolves
according to a time varying affine system driven by the personal best vector p(k) [19]. To obtain
a tractable analysis, one considers the behavior of the system near a candidate equilibrium where

the objective function has a stationary point and all particles are close to that point. Let x* € R
denote such a point. Define deviation variables

zi(k) = xi(k) = x", ri(k) = pi(k) — x*[20].

Stacking these deviations yields

zy(k) ri(k)
zk)=| | rk)=|[21];
Zn(k) rﬂ(k)
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convergence theorem

directed, jointly strongly connected row-stochastic, bounded nonzero weights objective regularity and boundedness

connectivity over time windows Lipschitz gradients or bounded noise

Figure 6. Logical structure of the graph-theoretic convergence guarantees. A decentralized
PSO convergence theorem is obtained by combining assumptions on the directed time-varying
topology (joint strong connectivity over windows), on the interaction weights (normalized,
uniformly positive where links exist), and on the optimization landscape (regularity and
boundedness conditions). Each block corresponds to a family of technical hypotheses that can
be mixed and matched to derive different convergence variants.

In terms of deviation variables, the position and velocity updates become
zi(k +1) = zj(k) + vi(k + 1)
and
vi(k +1)[22] = wvi(k) + a(ri(k) — zi(k)) + B(hi(k) — zi(k))
where
hi(k) = gi(k) = x*
is the deviation of the neighborhood best [23]. In stacked form,
h(k) = Per(k).

Using block matrices, one can write the combined update for z(k) and v(k) as
(Z(k N 1)) — A ([zz(k) ) + Bor(k) + Bsh(k)

where the matrices A, B., and B, are defined by

A= Ind Ind
—(G'+,B)Ind wlng|’

0 0
Bc - (aInd) ’ BS - (ﬂInd) '

Since h(k) = Pgr(k), the update can be rewritten as

(v(i(ﬁ)%z)ﬂ) =4 (iﬁfﬁ) + (Be + BsPe)r(K).

The evolution of the personal best deviations r(k) is governed by comparisons of the objective
function at x;(k) and p;(k). Near x*, and under the assumption that x* is a local minimizer, these
updates can be approximated by a process in which r (k) slowly contracts toward z (k) or remains
constant when no improvement occurs. This is highly nonlinear and state dependent, but for the
purpose of local linear analysis one can treat r(k) as an exogenous input process that tends to
zero as k increases when the swarm converges toward x*.
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A key step in the analysis is to separate the swarm dynamics into consensus and disagreement
components. Let 1, denote the vector of all ones in R”. The consensus subspace in R"? consists
of vectors of the form 1, ® y with y € R?. The orthogonal complement with respect to the
standard inner product is the disagreement subspace, which contains vectors whose components
sum to zero across particles [26]. The projection onto the consensus subspace is given by

1
J = ;(1n1;) ® Iy

and the projection onto the disagreement subspace is

M=1I,4-J.

For any stacked deviation vector z(k), one can write
z(k) = z°(k)[27) + 29 (k)

where
z°(k) = Jz(k),  z9(k) =Tiz(k).

The vector z¢(k) has identical components across particles and represents the average deviation
of the swarm, while z9(k) measures deviations from this average [28]. Similar decompositions
apply to v(k) and r(k). Define

ve(k) = Jv(k),  vo(k)=TIv(k),[29]
re(k) = Jr(k),  ri(k) =Tr(k).
Because Py is row stochastic, it preserves the consensus subspace [30]. For any y € R¢,
Pe(l,®y)=1,®y.
This implies that
JPc =J, PeJ =J.
Furthermore,
1P, = PI1[31]

holds when Py is row stochastic and has the structure W, ® I;. These relations show that the con-
sensus and disagreement components evolve almost independently under the communication
operator.

Applying the projections J and II to the stacked dynamics yields separate equations for the
consensus and disagreement states. Define the consensus state

=)

and the disagreement state

Using the properties of J and II, and the fact that P is row stochastic, one finds that the con-
sensus dynamics satisfy

sk + 1) = As®(k)[33] + (B + Bs)ré(k)
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while the disagreement dynamics satisfy
s9(k + 1) = As9(k) 4 Bor(k) + BsPerd(k)[34].

The consensus subsystem behaves as a single particle whose deviation and velocity are driven by
the consensus personal best deviation. The disagreement subsystem is driven by disagreement
in the personal bests and by the action of the communication matrix P, on that disagreement.

This decomposition is useful because the consensus subsystem does not depend on the detailed
structure of P, only on the fact that it preserves consensus. Its stability properties can be studied
using standard linear system techniques in low dimension. The disagreement subsystem, on the
other hand, depends directly on the structure and evolution of the communication matrices and
captures how differences in personal bests are propagated and damped across the swarm.

4 Convergence Analysis on Directed Time Varying Graphs

The convergence properties of the disagreement subsystem are closely linked to the behavior of
the sequence of communication matrices P,. The key question is under what conditions disagree-
ment in personal bests and in positions decays to zero as k grows [35]. The analysis proceeds in
two stages. First, one examines the dynamics of the disagreement component of the personal
best deviations. Second, one studies the forced linear system governing the disagreement in
positions and velocities.

The disagreement component of the personal best deviations satisfies a recursion of the form
rd(k +1) = Perd(k) + 8(k)[36]

where (k) represents perturbations arising from state dependent updates of personal bests and
from linearization errors. The term P,r?(k) captures the effect of neighborhood aggregation
of personal bests, which by itself drives the system toward consensus. The perturbation (k)
encompasses changes in the personal bests that introduce new disagreement, for example when
different particles find different improved positions.

The solution of this linear inhomogeneous recursion can be expressed in terms of the products
R(k, S) = PkPkfl ce Ps.

Unfolding the recursion yields [37]

k
rd(k+1) = R(k,0)r%(0) + > R(k, €+ 1)5(8).
¢=0

Under the joint rootedness and uniform positivity assumptions on the sequence (W), the matri-
ces R(k,0) converge to rank one matrices and contract the disagreement subspace. In particular,
if x lies in the disagreement subspace, then R(k,0)x converges to zero as k grows. Therefore,
the first term on the right hand side converges to zero for any initial disagreement r?(0).

The behavior of the sum depends on the perturbations §(¢) [38]. If the swarm converges toward
a neighborhood of x*, and the objective function has a strict local minimum at x*, then personal
bests tend to stabilize, so that §(¢) tends to zero. In many cases the perturbations are eventu-
ally zero, because once each particle stops finding better positions, its personal best no longer
changes. Under such conditions the sum converges, and r9(k) tends to zero. More generally, if
the series

S s8]

converges, then the sum defining r(k) remains bounded and tends to a limit as k increases,
because the coefficients R(k, £+ 1) have bounded norm and contract the disagreement subspace.
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Assuming that the perturbations in personal best updates are sufficiently small or eventually van-
ish, one concludes that r?(k) converges to zero [39]. Consequently, the personal best deviations
reach consensus, and there exists a vector r® € R such that

lim r(k) =1, r".

k—00

The consensus value r* depends on the trajectory of the swarm and the objective landscape;
the graph sequence determines the rates and intermediate patterns but does not uniquely fix

(o)

r—.

Given that r?(k) converges to zero, one can analyze the disagreement dynamics for positions
and velocities. The disagreement state s?(k) evolves according to

s%(k + 1) = As9(k)[40] 4 B.r? (k) + BsPero (k).
Let ®(k, s) denote the state transition matrix associated with the homogeneous system
sk +1) = As9(k).

If Ais constant and its spectral radius is strictly less than 1, then there exist constants C > 0 and
€ (0,1) such that

(k. s)|I[41] < Cp*~*

for all ¥ > s. Unfolding the inhomogeneous system vyields

k-1
s9(k) = D(k,0)s%(0) + > @k, €+ 1)(Ber?(€)[42] + B Perd(e)).
€=0

The first term converges to zero as k grows, thanks to the stability of A. For the sum, note that
|| Pl is uniformly bounded and r?(¢) tends to zero. Furthermore, the factors ®(k, ¢ + 1) decay
exponentially in k — €. A standard argument based on dominated convergence shows that the
sum converges and that s?(k) tends to zero as k tends to infinity [43].

The stability of the matrix A is directly related to the choice of gains w, a, and B, and to the
curvature of the objective function near x*. To make this connection explicit, one can study the
consensus subsystem, which behaves as a single particle tracking the consensus personal best
deviation. For local analysis near x*, assume that the objective function can be approximated
by a quadratic form with positive definite Hessian H. Then the gradient descent direction near
x* is approximately linear in the deviation, and the effect of moving toward the personal and
neighborhood bests can be modeled by a linear feedback with effective stiffness.

Consider the one dimensional case as a simple illustration. In this case each particle has scalar
position and velocity, and the deviation dynamics for the consensus state can be written as

2°(k + 1)[44] = z°(k) + v°(k + 1),

vi(k +1) = wv®(k) —kz°(k)

for some effective stiffness « that depends on the gains and the objective curvature. Combining
these relations yields a second order linear difference equation [45]

z°(k+1) = (1-k)z°(k) + wv°(k).

Alternatively, one can write the state vector (z¢(k), v¢(k))™ and the corresponding matrix A,
which in this scalar case has the form

Ae = (—1K w[}w]) '
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The stability of A requires that its eigenvalues lie strictly inside the unit disk. The characteristic
polynomial is

A= (14w + (w + k).

Schur stability criteria provide inequalities relating w and « that ensure stability. These inequal-
ities define a region in the (w, «) plane inside which the consensus dynamics are locally stable
[47].

In the multidimensional case with Hessian H, the dynamics can be diagonalized in the basis of
eigenvectors of H, leading to separate scalar equations for each mode with stiffness equal to an
eigenvalue of H. The most restrictive stability condition comes from the largest eigenvalue of H,
which yields the tightest bound on admissible gains. Thus the basic requirement for convergence
is that the linearized dynamics of a single particle around x* be stable for the chosen gains.

Combining the stability of the consensus subsystem with the decay of disagreement driven by
the communication matrices yields the main convergence statement. Under the assumptions
that the objective has a strict local minimum at x*, that the gains satisfy the stability conditions,
that the sequence of communication graphs is jointly rooted with uniformly positive weights,
and that perturbations due to personal best updates are sufficiently small or eventually vanish,
the swarm converges to a state where all particles share the same position and velocity, and
their personal bests are equal. The common limit lies in a neighborhood of x*, with the size of
the neighborhood depending on modeling approximations and disturbances.

The directed and time varying nature of the communication graphs is captured through the struc-
ture of the matrices P, and their products [48]. Joint rootedness ensures that no particle remains
permanently isolated and that information about good positions can reach the entire swarm over
time. Asymmetries in the graph manifest in the limiting influence weights x associated with the
products R(k, s), which determine how much each particle contributes to the consensus value
of personal bests. Strongly rooted agents exert more influence on the limit. Time variation can
accelerate or slow down convergence, depending on whether the switching pattern enhances
or weakens joint connectivity.

5 Robustness to Asynchrony, Delays, and Noise

Realistic multi agent systems rarely satisfy the assumptions of perfect synchronization and reli-
able communication. Asynchronous updates, communication delays, random link failures, and
measurement noise can alter the effective dynamics of the swarm. The linear mean field frame-
work and graph theoretic tools can be extended to include these factors by modifying the com-
munication matrices and adding disturbance terms [49].

Asynchrony arises when particles update their states at different times or with different frequen-
cies. One modeling approach is to assume that at each time step k only a subset of particles, say
thosein aset Ay C V, performs the velocity and position updates and possibly updates personal
bests. Particles not in A, keep their states unchanged at that step. The communication matrix
at time k can then be written as

Pe = DePi + (Ing — Di)

where Dy is a block diagonal matrix selecting the active particles and I, is the identity matrix.
For example, if particle i is active at time k then the corresponding block on the diagonal of D,
is I;, and if it is inactive then the block is zero. The matrix Py is row stochastic and encodes both
communication and activation.

The dynamics of the personal best disagreement under asynchrony can still be written in the
form

rf(k +1)[50] = Per?(k) + 8(k).

Under assumptions that each particle becomes active infinitely often and that the underlying
graphs remain jointly rooted over time, one can show that the products of P, still contract the
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disagreement subspace. This relies on results on products of stochastic matrices associated
with time varying graphs and time varying activation patterns. The presence of inactive nodes
slows down the contraction but does not prevent consensus if each node participates frequently
enough.

Communication delays can be modeled by assuming that the personal best information that par-
ticle / receives from particle j at time & is based on p;(k — d;;(k)) for some delay dj;(k) bounded
by a fixed constant dnay. This leads to an augmented state that includes delayed versions of
the personal bests. The augmented communication matrix becomes block upper triangular, with
identity blocks shifting the delayed states and weighted blocks inserting new information. The
resulting system can still be cast as a linear time varying system with a larger state dimension.
Under bounded delays and sufficient joint connectivity, consensus results can be extended, al-
though the convergence rate and robustness margin are reduced.

Random link failures and packet losses introduce randomness into the communication matrices
[51]. At each time k the matrix W, becomes a random matrix W, taking values in a finite set of
possible weight matrices corresponding to different edge failure patterns. The mean behavior of
the consensus process is governed by the expectation E[W]. If this expected matrix sequence
satisfies joint rootedness and uniform positivity in an average sense, then the expected products
E[R(k, s)] tend to rank one matrices. More refined results can be obtained under independence
assumptions and using martingale convergence theorems, leading to almost sure or mean square

convergence of the disagreement component.

Measurement noise and quantization errors can be incorporated as additive disturbance terms in
the update equations. For instance, suppose that the neighborhood best computed by particle /
is perturbed by an error ¢;(k), so that the actual value used in the velocity update is g; (k) +€; (k).
In stacked form, this yields an additional term in the velocity update of the form

Elk) = (ﬁs(zk))

where e(k) stacks the noise vectors. The disagreement dynamics then become [52]
s9(k + 1) = As9(k) 4 Bord(k) + BsPerd (k) + E9(k)

where E9(k) is the projection of E(k) onto the disagreement subspace [53]. If the noise is
bounded or has bounded second moments, and if the homogeneous system is stable and the
communication matrices contract disagreement, then the system is input to state stable. This
means that the disagreement remains bounded and often converges to a neighborhood of zero
whose radius is proportional to the noise magnitude.

The coupling between algorithm parameters and communication imperfections is important. Larger
inertia w and higher gains a and B typically accelerate convergence in ideal conditions but reduce
the stability margin and make the system more sensitive to delays and noise. For instance, the
stability region in the (w, ) plane shrinks when delays are introduced. Similarly, asymmetries
in directed graphs can amplify certain disturbances. Nodes with high out degree and low in de-
gree act as leaders whose errors or delays propagate widely, whereas nodes with low outgoing
influence have limited impact [54].

From a design perspective, robustness considerations motivate parameter choices that provide
sufficient damping of the dynamics. Choosing w significantly below 1, with moderate values of
a and B, tends to yield more overdamped behavior that tolerates delays and noise better, at the
cost of slower convergence. The trade offs can be quantified by examining the spectral radius
of the linearized system matrix under different parameter combinations and by analyzing worst
case contractions of the communication products.

6 Numerical and Design Implications

Although the analysis is conducted in a deterministic mean field setting, it suggests qualitative
behaviors that can be observed in numerical experiments and that can guide the design of de-
centralized particle swarm algorithms. A useful way to interpret the results is to view the swarm
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dynamics as a combination of a local second order linear system and an information diffusion
process governed by the directed communication graphs.

Consider a numerical scenario in which n particles move in a moderate dimensional space, such
as d = 5, and the objective function is a smooth, multimodal function with a known global
minimum. One can simulate different sequences of directed graphs while keeping the algorithm
parameters fixed and compare convergence rates and swarm behavior [55]. For example, using a
directed ring as the communication graph at each time step, with edges from particle i to particle
i + 1 modulo n, yields a topology in which information about good solutions propagates slowly
around the ring. In such a case the second largest eigenvalue modulus of the associated row
stochastic matrix is close to 1, leading to slow contraction of disagreement.

Numerically, such a ring topology often produces long transients during which different seg-
ments of the ring follow different neighborhood bests. Personal bests discovered by one particle
take many iterations to influence distant particles. The consensus decomposition explains this
behavior: the consensus mode moves according to the local dynamics, but the disagreement
modes decay slowly because the communication matrix has weak mixing properties. If the local
dynamics are close to marginal stability, the slow decay of disagreement can interact with noise
and cause oscillatory or wandering behavior [56].

In contrast, consider a time varying topology in which at each time step a directed random graph
is generated with each possible edge present with a certain probability, and directions assigned
randomly, but with the constraint that the resulting graph remains weakly connected. Over short
time windows, the union of these graphs is likely to be strongly connected and to contain multiple
directed spanning trees. The associated products of row stochastic matrices contract disagree-
ment more rapidly, and numerical simulations typically show faster alignment of personal bests
and positions. The swarm behavior in such settings resembles that of a centralized algorithm
in which a global best is effectively available, because the neighborhood bests across particles
become nearly identical.

The graph theoretic analysis suggests that adding even a small fraction of long range edges to
a sparse topology can significantly reduce the effective diameter of the communication graph
and improve convergence. For instance, augmenting a directed ring with a small number of
random directed shortcuts transforms it into a small world network. The eigenvalue spectrum of
the associated weight matrices shifts, reducing the magnitude of the second largest eigenvalue
and increasing the contraction rate of disagreement [57]. Simulations often confirm that a small
number of added edges can lead to substantial convergence acceleration, even when the total
communication cost increases only modestly.

The influence structure in directed graphs also affects which particles have dominant impact on
the swarm. In graphs with a clear root set that has directed paths to all nodes, personal bests
discovered by root particles heavily influence neighborhood bests and hence the motion of the
swarm. If root particles explore promising regions, this can lead to faster convergence. However,
if root particles become trapped in local minima or are affected by noise or delays, their outsized
influence can be detrimental. Graph designs that balance influence by ensuring that root sets
change over time or that no small subset of nodes permanently dominates the information flow
can improve robustness.

Another practical implication concerns the choice of algorithm parameters in relation to graph
properties [58]. When communication is dense and disagreement contracts quickly, one can
choose more aggressive parameters, with larger inertia and attraction gains, because the swarm
behaves similarly to a centralized system. In contrast, when communication is sparse or inter-
mittent, more conservative parameters may be necessary to ensure stability while disagreement
decays. This suggests that parameter tuning should take into account not only the objective
function but also communication properties such as graph connectivity, diameter, and variabil-
ity.

Asynchrony and delays affect design choices as well. In asynchronous implementations where
particles update at different rates, the effective contraction per global time unit decreases, and
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stability margins shrink. The analysis indicates that reducing inertia and gains can compensate
for this reduction and prevent oscillations [59]. When delays in neighborhood best information
are significant, using lower inertia and smaller social gains can also help dampen the effect of
stale information. Adaptive schemes that adjust parameters based on measured communication
quality, such as observed link reliability or update frequency, can be motivated by this viewpoint.

While the linear mean field model abstracts away many nonlinearities and stochastic effects,
it captures structural aspects of the interaction between graph topology and swarm dynamics.
Numerical studies that implement the full stochastic algorithm with finite populations, random
coefficients, and more complex objective functions often exhibit behaviors consistent with the
predictions based on the linear model. The decomposition into consensus and disagreement
modes provides a lens through which to interpret phase portraits and time series plots of parti-
cle positions and velocities. For example, rapid alignment of positions after a transient indicates
strong disagreement contraction, whereas persistent clusters moving in different directions sug-
gest slow or incomplete mixing due to graph structure.

In design applications, these insights can be used to synthesize communication protocols and
graph structures that satisfy constraints on bandwidth and connectivity while delivering accept-
able convergence performance [60]. One can tailor W; to trade off communication cost and
convergence speed by adjusting neighborhood sizes and weights. For instance, giving slightly
higher weight to neighbors that are information hubs can speed up consensus but may increase
vulnerability to failures at those nodes. Conversely, more uniform weighting can distribute influ-
ence more evenly and enhance robustness at the expense of slower convergence.

7 Conclusion

Decentralized particle swarm optimization over directed, time varying communication graphs
exhibits a rich interplay between local particle dynamics and global information diffusion. By
modeling the mean dynamics using linear systems and encoding the communication structure
through products of row stochastic matrices, one can obtain convergence guarantees that sep-
arate the influence of algorithm parameters from that of graph topology. The decomposition
of the swarm state into consensus and disagreement components reveals that the consensus
dynamics reduce to those of a single particle driven by averaged best information, while the
disagreement dynamics are governed by the connectivity and temporal patterns of the directed
graphs.

Under assumptions that the objective function has a strict local minimum, that the gains defining
the particle updates yield a stable linearization around this minimum, and that the sequence
of communication graphs is jointly rooted with uniformly positive weights, the analysis shows
that disagreement in personal bests and in particle states decays to zero [61]. All particles then
converge to a common position and velocity, and their personal bests agree. The directed, time
varying graphs affect the speed and intermediate patterns of this convergence but do not prevent
agreement as long as persistent connectivity conditions hold.

Extensions of the framework to account for asynchronous updates, bounded communication
delays, random link failures, and measurement noise illustrate that similar qualitative conclusions
can be reached in more realistic settings, provided that the effective communication matrices
retain contraction properties and that disturbances remain bounded. In such cases the swarm
converges to a neighborhood of the equilibrium, with the size of this neighborhood determined
by the disturbance characteristics and the stability margins of the linearized dynamics.

The graph theoretic perspective developed here provides structural insight into how directed,
time varying communication patterns shape the behavior of decentralized particle swarms. It
suggests that convergence performance can be improved by designing communication graphs
that are jointly well connected, by tuning particle update gains in accordance with graph prop-
erties, and by managing the trade offs between convergence speed and robustness to imperfec-
tions. While the analysis focuses on mean field and local properties, the conceptual separation
between consensus and disagreement modes offers a foundation for further studies that incorpo-
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rate more detailed models of stochastic effects, nonlinearities, and complex objective landscapes
in decentralized swarm optimization [62].
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