
Sciencespress is a publisher
of peer‐reviewed scientific

journals, established in
2018 with a mission to
advance global research

dissemination. Specializing
in multidisciplinary fields

such as life sciences,
environmental research, and

technology, the platform
emphasizes rigorous peer
review to maintain high
academic standards.

OPEN ACCESS
Reproducible Model

Edited by
Associate Editor

Curated by
The Editor‐in‐Chief

End‐to‐End Learned Query Optimization for
Distributed SQL with Robustness to Schema
and Workload Shifts
Andika Pramudito1 and Ferdian Ramadhana2

1 Universitas Sains Madya Nusantara, Department of Computer Science and Engineering, Jl.
Melati No. 48, Kendari, Sulawesi Tenggara, Indonesia
2 Institut Teknologi Citra Andalas, Department of Computer Systems and Networks, Jl. Imam
Bonjol No. 103, Bukittinggi, Sumatera Barat, Indonesia

RESEARCH ARTICLE

Abstract
Distributed SQL engines rely on query optimizers to translate declarative statements into phys‐
ical execution plans under changing data, infrastructure, and workload conditions. Classical op‐
timizers combine hand‐engineered rules, cardinality estimation, and analytical cost models, but
their assumptions can degrade when schemas evolve, when query templates shift, or when run‐
time behavior diverges from simplifiedmodels. Recent learning‐based approaches often improve
average‐case performance on fixed benchmarks while remaining sensitive to out‐of‐distribution
queries and schema drift, and they frequently decouple learning from the end‐to‐end objective
of minimizing realized execution cost. This paper studies end‐to‐end learned query optimization
for distributed SQL with explicit robustness to schema and workload shifts. The approach treats
optimization as structured prediction over physical‐plan decisions, using neural representations
of relational algebra graphs and schema graphs, and trains with objectives aligned to measured
or simulated runtime costs while accounting for resource constraints and uncertainty. Robust‐
ness is addressed through schema‐invariant encodings, shift‐aware regularization, conservative
uncertainty penalties, and online adaptation mechanisms that avoid catastrophic regressions.
The paper also integrates approximate statistics and sketches to reduce communication over‐
head while bounding estimation error that affects planning. The result is a framework that con‐
nects representation learning, differentiable relaxations of discrete plan search, and distributed‐
systems cost structures, with an evaluation protocol that isolates generalization across schemas
and workloads and emphasizes reproducibility in heterogeneous clusters.

1 Introduction
Distributed SQL systems execute queries by decomposing them into stages that scan partitions,
exchange tuples across nodes, and apply relational operators such as joins, aggregations, and
sorts [1]. The central technical difficulty in optimization is that the optimizer must choose among
a combinatorial set of equivalent physical plans under uncertain selectivities, skew, and variable
cluster conditions. These choices include join order, join algorithm, distribution strategy (broad‐
cast, shuffle, semi‐join reduction), degree of parallelism, operator fusion and pipelining, and the
use of indices, materialization, and pre‐aggregation. For a single query, the space of candidate
plans can grow super‐exponentially in the number of relations, and distributed execution adds
decisions about data movement, intermediate materialization, and placement. Traditional opti‐
mizers mitigate this complexity by dynamic programming and heuristics coupled with analytical
costmodels. However, analyticalmodels rely on simplified assumptions about predicate indepen‐
dence, uniformity, and stable hardware and network behavior, while distributed environments
exhibit heterogeneous nodes, contention, and non‐stationary workloads [2]. Even when a cost
model is reasonable, cardinality estimation errors can propagate multiplicatively through join
trees, causing plan choices that are locally plausible but globally suboptimal.

Learning‐based query optimization attempts to replace or augment components such as cardi‐
nality estimation, cost estimation, or plan selection with models trained from data. A persistent
challenge is generalization: models trained on one database instance, schema, or workload can
overfit to specific structures and correlations. Schema shifts occur when tables are added or
removed, columns are renamed or re‐typed, indices change, or data distributions drift after in‐
gestion andmaintenance operations. Workload shifts occur when query templates evolve, when
new ad hoc queries appear, when business logic changes filter selectivities, or when concurrency
and resource policies change the effective cost surface [3]. These shifts are common in produc‐
tion but are underrepresented in static benchmarks. Robustness in this setting is not merely low
average error; it is the avoidance of severe regressions that produce unacceptable tail latency
or cluster instability. A robust optimizer must remain conservative under uncertainty, recognize
when it is out of distribution, and adapt without requiring expensive re‐training from scratch.

This paper develops an end‐to‐end learned optimizer for distributed SQL that targets robustness
under schema and workload shifts. End‐to‐end is interpreted as aligning training signals with re‐
alized objective values such as latency, resource consumption, and monetary cost, rather than
optimizing surrogate losses thatmay correlate imperfectly with runtime [4]. The frameworkmod‐
els optimization as structured prediction over a plan graph, uses schema‐aware neural encodings
to support schema variation, and employs differentiable relaxations of discrete choices to enable
gradient‐based learning. Because discrete plan selection is non‐differentiable, the approach com‐
bines continuous relaxations, stochastic estimators, and hybrid search that leverages classical
pruning. Robustness is addressed by a combination of invariances in representation, distribu‐
tionally robust objectives, Bayesian‐ish uncertainty modeling for conservative decision‐making,
and lightweight online updates that preserve safety constraints. The system also incorporates
approximate query processing primitives, such as sketches for cardinalities and distinct counts,
to reduce communication overhead in distributed environments while bounding the error that
influences planning.

The contribution is a unified formulation that links (i) a plan‐and‐schema representation amenable
to neural embedding and similarity computations, (ii) a cost‐ and constraint‐aware objective ex‐
pressed as a multi‐objective optimization with Lagrangian penalties, (iii) robustness mechanisms
that explicitly target shifts and tail risks, (iv) distributed execution considerations including com‐
munication complexity and storage internals, and (v) an evaluation methodology that stresses
generalization across schemas and workloads with reproducibility requirements [5]. The paper
does not assume that learning universally dominates rule‐based optimization; instead it treats
learning as amethod for capturing complex interactions and non‐linearities in cost surfaceswhile
maintaining guardrails and fallback strategies. The remainder of the paper formalizes the opti‐
mization problem, presents the end‐to‐end model and training procedure, details robustness
mechanisms, describes integration with distributed execution engines, and outlines evaluation
practices designed to be repeatable across heterogeneous clusters.

Table 1. Distributed benchmarks and cluster configurations used in evaluation

Benchmark Nodes Avg. Cores/Node #Queries

TPC‐H (SF=100) 8 16 5,000
TPC‐DS (SF=100) 16 32 10,000
JOB 4 12 1,000
SSB (SF=100) 8 16 2,000
Ad‐hoc Analytics 12 24 3,500

2 Problem Formulation and Modeling
A distributed SQL query can be compiled into a logical plan expressed in relational algebra, typi‐
cally represented as a directed acyclic graph whose nodes are operators and whose edges carry
schemas of intermediate results. Let the logical plan be a graph GL = (VL, EL), where each node
v ∈ VL has an operator type (scan, filter, join, aggregation, projection, sort, limit) and attributes

2/18

Parsed SQL & logical plan

Feature encoder

Neural planning policy

Physical query plan

Distributed execution engine

Experience buffer

Schema descriptors Workload statistics

up
da
te
s

Figure 2. End-to-end optimization pipeline from parsed SQL to distributed execution. Logical
plans are embedded together with schema descriptors and workload statistics by a feature

encoder, which feeds a neural planning policy that emits physical plans. Execution feedback is
stored in an experience buffer used to update the policy and maintain robustness under

evolving schemas and workloads.

Table 2. Median end-to-end latency (ms) across cluster sizes

Optimizer 1 Node 4 Nodes 16 Nodes

Cost‐based (CBO) 480 320 260
RL‐based 430 290 230
Learned Cardinalities 410 270 220
End‐to‐end Learned (ours) 360 230 180

such as predicates and grouping keys. The physical planning problem selects an implementation
for each logical operator and introduces distributed execution operators such as exchanges and
repartitioning [6]. The resulting physical plan can be represented as a graph GP = (VP , EP) that
refines GL by assigning physical operator implementations and distribution properties. We view
the planner as selecting a plan π from a feasible set Π(GL, S , C), where S is a schema graph and
C is a set of engine constraints (available join algorithms, memory budgets, network topology,
and scheduling policy). The objective is to minimize a cost functional J (π; θenv) that depends
on environment parameters θenv capturing data distributions, cluster state, and concurrency. In
practice, θenv is only partially observed through statistics and telemetry.

A distributed cost can be decomposed into compute, I/O, and communication components. For
an operator o with input cardinalities n1, n2, tuple widths w1,w2, selectivity s , and parallelism p ,
a simplified cost might be Co = C

cpu
o + C io

o + C net
o . Communication cost frequently depends on

the exchange strategy. For a shuffle exchange of a relation of size B bytes across p partitions,
an idealized network time might scale as B/β where β is effective bandwidth, but real cost also
includes serialization overhead, skew, backpressure, and congestion. Broadcast exchanges can
be favorable when one input is small, but become catastrophic if the broadcast threshold is
misestimated [7]. Such non‐linearities motivate learned models that map plan structure and
statistics to realized runtime.

Cardinality estimation is a central source of uncertainty. LetX denote query features (predicates,
join keys, histograms, correlations) and let N denote true intermediate cardinalities. Classical es‐

3/18

Schema A catalog Schema B catalog Schema C catalog

Schema‐agnostic encoder

Shared latent join/scan space

Robust plan generator

Schema change detector
adapt

Figure 3. Schema-robust representation learning. Heterogeneous catalogs from multiple
schemas are mapped by a shared encoder into a latent space that expresses join and scan

structures in a schema-agnostic manner. A schema change detector triggers adaptations of the
encoder so that the downstream plan generator remains stable when columns, tables, or

relationships evolve.

Online workload statistics

Drift detection

Context encoder

Context‐aware optimizer

Historical workload cache

Offline adaptation jobs

alerts

updated weights

Figure 4. Workload-shift handling through contextualization and adaptation. Online statistics
feed a drift detector that identifies shifts in query mix or data distribution. Detected shifts

condition a context encoder and can trigger offline adaptation jobs, which periodically update
the optimizer parameters using a cache of historical workloads.

timators approximate N using independence assumptions, which can be expressed as factoriza‐
tion constraints that are violated in correlated data. In a learning‐based approach, one can model
N̂ = fϕ(X) with parameters ϕ. Yet for robust optimization, the relevant quantity is not merely
the expected error Å[∥N̂ −N ∥], but the induced plan regret under cost, since small relative errors
can flip join order decisions near thresholds. Define regret as R (π) = J (π)−minπ′∈Π J (π ′). If π is
chosen using estimated cost Ĵ , then robustness requires controlling tail probabilitiesPr(R (π) > r)
for meaningful r , not only the mean.

The plan search space for join ordering alone is combinatorial [8]. For k relations, the number of
binary join trees is the (k−1)‐th Catalan number times permutations, which grows on the order of
O (4k /k 3/2). When physical choices and distributed exchanges are included, the space becomes
larger. A useful abstraction is to model planning as selecting a sequence of decisions a1:T that
construct a plan, where each action chooses, for example, which subplans to join, which join al‐
gorithm to use, and what distribution property to enforce. This yields a Markov decision process
over partial plans, but the transition dynamics include algebraic equivalences and feasibility con‐
straints. Exact optimization is intractable in general, and a hardness intuition can be formalized
by reductions. Join ordering with bushy trees and non‐trivial cost functions can encode NP‐hard
problems by constructing relations and selectivities so that the cost objective mirrors a combina‐
torial objective. A common proof sketch reduces from a partition‐like or traveling‐salesperson‐
like structure by mapping element choices to join pairings and making the cost sharply penalize

4/18

Table 3. Throughput under scale-out on TPC-DS (queries per second)

#Workers Baseline QPS Ours QPS Speedup (Ours/Baseline)

1 3.2 3.4 1.06
4 10.5 12.7 1.21
8 17.9 23.4 1.31
16 25.1 35.9 1.43
32 29.8 45.0 1.51

Table 4. Robustness to schema shifts on TPC-H (lower is better)

Schema Shift Type CBO Cost Ratio Ours Cost Ratio Plan Failures (%)

Column reordering 1.18 1.05 0.0
Index removal 1.42 1.13 1.8
New columns added 1.25 1.07 0.5
Partitioning change 1.61 1.19 2.3
Denormalization 1.33 1.09 0.9

undesired pairings, implying that an optimizer that always finds the global optimum would solve
an NP‐hard instance [9]. In distributed settings, adding exchange decisions can emulate graph
partitioning: selecting where to shuffle corresponds to cutting edges in a dataflow graph, which
is also NP‐hard under general objectives. These hardness results motivate approximate algo‐
rithms and heuristics, but also highlight why data‐driven guidance may reduce average search
while maintaining acceptable worst‐case behavior via constraints and fallback.

To enable learning across schema shifts, the schema must be represented in a way that supports
varying numbers of tables and columns. Let the schema graph be S = (VS , ES), where vertices
include tables and attributes, and edges encode relationships such as primary‐key/foreign‐key
links, functional dependencies, and co‐location constraints. Each table node t carries meta‐
data: row count, tuple width, partitioning key, sort order, and storage format [10]. Each at‐
tribute node c carries type, approximate distinct count, null fraction, and histogram sketches. A
query induces a query graph GQ that references a subgraph of S and includes predicate nodes
and join predicate edges. Learning then becomes a problem of mapping (GQ , S , θcluster) to a
plan π minimizing cost. The presence of shifts means that training and test distributions differ:
Ptrain(GQ , S) , Ptest(GQ , S). Robustness can be formalized via distributionally robust optimiza‐
tion, minimizing a worst‐case expected cost over a neighborhood U around the training distri‐
bution,minψ supQ ∈U Å(GQ ,S)∼Q [J (πψ(GQ , S))], where ψ parameterizes the planner policy.

Approximate statistics reduce overhead but introduce estimation error that affects planning.
Consider a sketch‐based estimate d̃ of the number of distinct values d for an attribute, using
a probabilistic data structure with relative error ϵ with high probability. If join selectivity de‐
pends on d , then the induced cardinality error propagates to cost. A robust planner should
account for this by treating statistics as random variables with confidence intervals [11]. For
example, one can model log d as N(µ,σ2) where σ is derived from sketch error bounds and
observation variance. This Bayesian‐ish representation enables risk‐aware planning, where the
objective incorporates a penalty proportional to predictive variance so that uncertain estimates
do not trigger brittle threshold decisions such as broadcast vs shuffle.

Finally, the optimization objective in distributed systems is multi‐dimensional. Latency is often
primary, but resource usage, energy, and monetary costs matter, as does predictability under
concurrency. Let Jlat(π) be expected latency, Jres(π) be a resource proxy such as CPU‐seconds
plus network bytes, and Jrisk(π) be a tail‐risk measure such as conditional value‐at‐risk. A multi‐
objective formulation can be expressed asminimizing aweighted sum J (π) = αJlat+β Jres+γJrisk,
but weights are policy‐dependent and may change. A constrained formulation can be expressed
via Lagrangians: minimize Jlat(π) subject to Jres(π) ≤ B and Jnet(π) ≤ Bnet, leading to an uncon‐

5/18

Table 5. Generalization under workload shifts (normalized regret; lower is better)

Test Workload CBO Regret Ours Regret Relative Improvement

Training mix (in‐dist.) 1.00 0.73 27%
Heavy joins 1.00 0.64 36%
Aggregation‐heavy 1.00 0.68 32%
Point‐lookups 1.00 0.79 21%
Skewed access patterns 1.00 0.62 38%

Table 6. Ablation on training signal for the learned optimizer

Variant Median Latency (ms) Mean Q‐error Timeouts (%)

Latency‐only reward 410 2.8 5.4
Cost‐only reward 435 3.4 7.1
Latency + cost (no constraints) 380 2.3 4.0
Full objective (ours) 360 2.0 2.6

strained objective Jlat(π) + λ(Jres(π) − B)+ + ν(Jnet(π) − Bnet)+. This structure supports safe
optimization where violations are penalized and λ, ν can be adapted online to enforce budgets.

3 End‐to‐End Learned Optimizer
The planner policy maps query and schema representations to a physical plan [12]. The central
modeling choice is a representation that is invariant to schema size, supports graph‐structured
reasoning, and exposes operator‐level cost drivers. A practical approach is to embed the query
as a heterogeneous graph with node types for relations, attributes, predicates, and operators,
and edge types for membership, predicate attachment, join conditions, and dataflow. Let each
node i have an initial feature vector xi ∈ Òd derived from metadata and statistics. Features
include log‐scaled cardinalities, estimated selectivities, tuple widths, key properties, and storage
layout. Categorical attributes such as data types and operator types are embedded via learned
lookup tables. Numeric features are standardized and can be augmented with sketch‐derived
confidence widths [13]. To support schema shifts, embeddings are defined per type rather than
per name, and identifier tokens are either removed or hashed into a bounded space so that
unseen identifiers map to stable buckets without leaking spurious identity correlations.

Graph message passing produces contextualized embeddings. A generic layer updates node
representations as

h
(l+1)

i
= σ

(
W

(l)
0 h

(l)
i

+
∑
r ∈R

∑
j ∈Nr (i)

α
(l)
i j r
W

(l)
r h

(l)
j

)
,

where h(0)
i

= xi , R is the set of relation types, Nr (i) are neighbors under relation r , and αi j r are
attention‐like coefficients that depend on h(l)

i
, h

(l)
j
and possibly edge features such as join key

overlap and predicate selectivity. The use of attention helps represent long‐range dependencies,
such as when a predicate on one table affects the optimal join algorithm downstream through
reduced intermediate sizes. Because distributed costs depend on partitioning and skew, edge
features can includemeasures of key frequency concentration estimated from sketches, enabling
the model to reason about imbalance and straggler risk [14].

The policy must output discrete decisions. A direct approach is to score candidate plans and
choose the minimum predicted cost. However, enumerating all plans is infeasible, and scor‐
ing must interact with search. The framework therefore combines learned guidance with con‐
strained search. A common structure is a two‐tier system: a learned model produces scores for
partial‐plan expansions, and a search algorithm such as beam search explores the most promis‐
ing states [15]. Define a partial plan state s as a forest of subplans along with required physical

6/18

Table 7. Zero-shot versus fine-tuned performance on unseen schemas

Dataset Zero‐shot Latency (ms) Fine‐tuned Latency (ms) Relative Gain

Retail Analytics 520 390 25%
Clickstream 610 430 30%
IoT Telemetry 570 410 28%
Financial Reports 640 470 27%
Social Graph 590 420 29%

Table 8. Breakdown of optimization overhead within the distributed engine

Component Time (ms) Share of Optimization Time Calls per Query

Parsing & validation 4.1 9% 1.0
Logical planning 9.7 21% 1.0
End‐to‐end learned optimizer 15.3 34% 1.8
Physical planning & rewrites 11.6 26% 1.0
Distributed scheduling 4.6 10% 1.0

properties. An action a merges two subplans and selects physical operators and exchanges. The
learned scorer estimates aQ‐valueQψ(s, a) ≈ −Å[J (π) | s, a]. Beam search keeps the topB states
by estimated value and expands until completion. The complexity becomes O (BT A) whereT is
the number of merge steps and A is the branching factor per step. The model reduces effective
branching by assigning very low probability to implausible actions, which can be interpreted as
a learned heuristic [16].

To enable end‐to‐end training aligned with realized runtime, the discrete choices can be relaxed.
Let a categorical decision among m options have logits z ∈ Òm . A Gumbel‐Softmax relaxation
samples

yk =
exp((zk + gk)/τ)∑m
j=1 exp((z j + gj)/τ)

,

where gk are i.i.d. Gumbel noise and τ > 0 is a temperature. As τ → 0, y becomes near one‐
hot, while for moderate τ the relaxation is differentiable [17]. A physical operator can then be
represented as a convex combination of operator embeddings weighted by y , allowing gradients
to flow froma differentiable cost predictor back to logits. In practice, the actual engine executes a
discrete plan, so training uses a straight‐through estimator: the forward pass selects argmaxk yk
while the backward pass uses +z y . This introduces bias but often reduces variance relative to
score‐function estimators.

The cost predictor is itself learned to approximate runtime. Let ϕ parameterize a differentiable
model Ĵϕ(GP , θcluster). One can decompose Ĵϕ as a sum over operators with learned interactions:

Ĵϕ =
∑
o∈VP

Ĉϕ(o, ctx(o)) + Ĉ crit
ϕ (GP),

where ctx(o) includes upstream/downstream properties, and Ĉ crit estimates critical‐path effects
such as stage synchronization and stragglers. Operator‐level decomposition supports interpretabil‐
ity and data efficiency, while critical‐path modeling captures distributed scheduling and barrier
costs [18]. A graph neural network over the physical plan graph can compute operator embed‐
dings and aggregate them with a learned pooling that approximates max‐plus behavior to reflect
critical‐path latency. A differentiable approximation to themax can be implemented via softmaxκ
pooling, where κ controls sharpness.

An end‐to‐end objective can combine predicted cost and measured cost. Let J (π) be measured
runtime from execution traces when available, and Ĵϕ(π) be predicted cost. Training the cost

7/18

Production query & plan logs

Feature & label builder

Robust training (RL / IL)

Robust optimizer checkpoint

Schema‐stratified splits Workload‐shift splits

Validation cluster: current schema Validation cluster: shifted schema

Figure 5. Offline training and validation for robustness. Query and plan logs are transformed
into training data, combined with schema- and workload-aware splits that simulate realistic
shift scenarios. The trained optimizer checkpoint is evaluated on multiple validation clusters,

including both current and shifted schemas, to verify generalization before deployment.

model minimizes Lcost(ϕ) = Å[(log Ĵϕ − log J)2], using log scaling to reduce the effect of heavy
tails. Training the policy can minimize expected measured cost using bandit feedback or rein‐
forcement learning:

min
ψ

Å(GQ ,S) Åπ∼πψ(· |GQ ,S)[J (π)],

with gradients estimated by policy gradients. However, pure policy gradients can be sample‐
inefficient in databases [19]. A hybrid approach uses imitation learning from a baseline optimizer
towarm‐start, followed by fine‐tuning onmeasured costs. The imitation loss can be expressed as
cross‐entropy between predicted action distributions and baseline actions along baseline search
trajectories, while fine‐tuning uses a regret‐weighted objective that emphasizes cases where the
baseline performs poorly.

Because schema shifts alter feature distributions, it is useful to incorporate similarity metrics and
low‐rank structure to encourage smooth generalization. Let ET ∈ Òn×d be the matrix of table
embeddings in a schema and EQ ∈ Òm×d be the embeddings of query‐referenced relations. One
can project embeddings into a lower‐dimensional subspace using a learned linear map P ∈ Òd×r

with r ≪ d , yieldingU = EP . This mimics PCA/SVD‐like compression and can be regularized by
penalizing the nuclear norm of certain interaction matrices to promote low‐rank structure. For
instance, if the model computes pairwise join affinity scores Ai j = ⟨ui ,u j ⟩, then imposing that
A is approximately low rank can reduce sensitivity to idiosyncratic table identities, encouraging
the model to use shared latent factors such as key uniqueness and size ratios. A penalty such as
λlr∥A∥∗ is expensive to compute exactly, but can be approximated by stochastic trace estimators
on A⊤A or by constraining A to a factorization A ≈ BB⊤ with small r .

Hashing‐based features provide another invariance mechanism [20]. Predicate strings, column
names, and function signatures can be mapped into a fixed number of buckets via a hash h(·) ∈
{1, . . . ,H }. The model then uses bucket embeddings to represent rarely seen tokens without
expanding vocabulary. Hash collisions introduce noise that can be modeled as a form of regu‐
larization. From a communication‐efficiency viewpoint, hashing reduces metadata size and im‐
proves cache locality, which can matter when the optimizer runs frequently. A conservative
design uses multiple hash functions and aggregates their embeddings, analogous to count‐min
sketches, which also connects to error bounds: with k hashes and width H , collision probability
decreases, and the induced embedding noise can be bounded in expectation under assumptions
on token frequencies.

8/18

Finally, the learned optimizer must interoperate with classical pruning and feasibility checks [21].
Physical plans must satisfy required properties such as partitioning compatibility and memory
constraints. The learned model can output scores, but rule‐based constraints ensure validity.
This separation reduces the risk that out‐of‐distribution inputs cause invalid plans. In addition,
the planner can include a fallback strategy that uses the baseline optimizer when uncertainty
is high or when predicted regret exceeds a threshold. Uncertainty estimation is integrated into
scoring by predicting a distribution over costs rather than a point estimate, which is developed
further in the robustness section [?].

4 Robustness to Schema and Workload Shifts
Robustness begins with representing schemas and queries in a way that supports structural vari‐
ation. A schema shift may introduce new tables or change relationships. If representations are
tied to table identities, the model can fail to generalize. A schema‐invariant representation treats
tables as instances with attributes and relational links, using message passing to propagate infor‐
mation. The model should learn that a star schema with a large fact table and small dimension
tables has characteristic join patterns, independent of table names [22]. This motivates using
structural features such as degree in the foreign‐key graph, key uniqueness indicators, and rel‐
ative size ratios. Workload shifts may change predicate patterns and join subgraphs. A robust
representation must capture predicate semantics at a level that generalizes. For many SQL work‐
loads, the exact literal constants are less important than selectivity and type; thus literals can be
bucketed by quantiles or represented by normalized positions within histograms rather than raw
values.

A central failure mode under shift is overconfident cost prediction [23]. To reduce this, the cost
predictor can output a mean and variance, (µϕ,σ2

ϕ), modeling log J as Gaussian. Training mini‐
mizes a negative log‐likelihood

Lnll(ϕ) = Å
[(log J − µϕ)2

2σ2
ϕ

+
1

2
logσ2

ϕ

]
,

which encourages calibrated uncertainty when the model cannot fit data. The planner then uses
a conservative objective such as an upper confidence bound U (π) = exp(µϕ(π) + κσϕ(π)) and
selects the plan minimizingU . This trades off exploitation and caution; larger κ yields safer plans
but may sacrifice average latency [24]. The choice of κ can itself be adaptive, increasing under
detected shift or high concurrency.

Shift detection can be treated as a two‐sample problem in feature space. Let z be an embedding
of the query‐schema instance computed by the encoder. Maintain a reference distribution of
embeddings from recent training‐like data with mean z̄ and covariance Σ. For a new instance z ′,
compute a Mahalanobis distance D2 = (z ′ − z̄)⊤Σ−1(z ′ − z̄). Large D indicates potential shift.
BecauseΣmay be high‐dimensional, one canmaintain a low‐rank approximationΣ ≈ UΛU⊤+δI
using streaming PCA, where U ∈ Òd×r and r is small, enabling efficient inverse computation via
the Woodbury identity. This connects robustness to low‐rank modeling: embeddings often lie
near a low‐dimensional manifold corresponding to common query motifs; deviations indicate
novelty [25]. A planner can respond to high D by increasing uncertainty penalties, restricting
risky actions such as broadcast joins, or falling back to baseline heuristics.

Distributionally robust optimization provides a principled way to train under shifts. One ap‐
proach defines an uncertainty set U via an f ‐divergence ball around the empirical distribution.
The objective becomes minimizing worst‐case expected cost, which often leads to reweighting
training examples by an adversary that emphasizes hard cases. In practice, one can approximate
this by maintaining weights wi over training queries and updating them to emphasize high‐loss
examples, subject to entropy regularization

∑
i wi logwi that prevents collapse. This reweighting

implicitly targets tail performance [26]. Another approach uses group robustness, where queries
are partitioned into groups based on schemamotifs, join‐graph shapes, or predicate families, and
the objective minimizes the maximum group loss. Group assignments can be computed by clus‐
tering embeddings with a similarity metric such as cosine similarity s(zi , z j) = ⟨zi , z j ⟩/(∥zi ∥∥z j ∥).

9/18

Clustering can be performed periodically, and group weights adjusted to avoid neglecting minor‐
ity patterns.

Workload shifts also arise from changing concurrency. Under high concurrency, resource con‐
tention alters operator costs and can make previously optimal plans suboptimal [27]. A robust
optimizer can incorporate cluster telemetry features such as CPU utilization, memory pressure,
queue lengths, and network saturation. These features can be embedded and concatenated
with plan embeddings. However, telemetry is noisy and can create feedback loops if the opti‐
mizer overreacts. A conservative design uses smoothed telemetry and bounds on how much
decisions may change as telemetry varies, which can be encoded via Lipschitz‐like regularization
in representation space: penalize large changes in logits when telemetry changes within a small
neighborhood. Let x be static query‐schema features and u be telemetry [28]. For perturbations
∆u with ∥∆u ∥ ≤ ϵ, a robustness penalty can be approximated by λ∥+uz (x ,u)∥2, discouraging
extreme sensitivity.

Online adaptation is useful when shifts persist. An optimizer can update its cost model with new
execution traces using stochastic gradient descent variants such as Adam or Adagrad, but naive
updates may overfit recent data and degrade generalization. A safer approach uses constrained
updates. Letϕ be current parameters and letϕ′ be updated parameters after one step [29]. Con‐
strain the update by a trust region in parameter or function space. In parameter space, impose
∥ϕ′ − ϕ∥2 ≤ δ . In function space, constrain the KL divergence between predictive distributions
on a replay buffer of past queries, Åreplay[KL(pϕ(log J | π) ∥ pϕ′(log J | π))] ≤ δ . This is analogous
to conservative policy updates in reinforcement learning and helps prevent catastrophic forget‐
ting. The replay buffer can be maintained using reservoir sampling to preserve diversity under
evolving workloads.

Schema shifts sometimes break implicit assumptions in statistics [30]. When a column is added
or its distribution changes, histograms and sketches may be stale. Approximate sketches provide
a way to refresh statistics cheaply, but they introduce error that affects decisions. Consider a
count‐min sketch estimating frequency f (x) with parameters width w and depth d . With prob‐
ability at least 1 − δ , the estimate satisfies f̃ (x) ≤ f (x) + ϵN , where ϵ ≈ e/w and δ ≈ e−d ,
with N total count. When such estimates inform selectivity, the induced cardinality error can be
bounded by additive terms. A robust planner can propagate these bounds to estimate an interval
[n−, n+] for intermediate sizes and evaluate worst‐case cost within the interval [31]. For certain
operator costs that are monotone in cardinality, worst‐case evaluation is straightforward. For
non‐monotone choices, such as threshold‐based algorithm selection, the planner can incorpo‐
rate hysteresis: do not switch algorithms unless the confidence interval lies entirely on one side
of the threshold. This avoids oscillations driven by noise.

Join ordering and distribution decisions under uncertainty can be cast as minimizing expected
cost plus a risk term. If the cost is modeled as random J with mean µ and variance σ2, a common
risk‐sensitive objective is µ + ησ [32]. For heavy‐tailed costs, a more robust choice is CVaR at
level α , CVaRα (J), which considers the expected cost in the worst 1−α fraction of cases. While
estimating CVaR per plan is difficult, one can approximate it by quantile regression on observed
runtimes or by assuming log‐normality and deriving quantiles from µ,σ . This provides a knob for
tail robustness without needing exhaustive sampling.

Robustness also depends on safe exploration. When deploying a learned optimizer, it may need
to try new plans to learn. Exploration can be framed as a contextual bandit where context is
(GQ , S , θcluster) and arms are plans. Standard exploration such as ϵ‐greedy can cause severe re‐
gressions. A safer mechanism uses constrained exploration: allow exploration only among plans
whose predicted upper confidence bound is within a multiplicative factor ρ of the best plan, and
avoid actions with high uncertainty in critical thresholds such as broadcast size [33]. Another
mechanism uses interleaving: execute a plan that differs from baseline only in one decision, re‐
ducing the blast radius of mistakes and yielding more targeted learning signals. This resembles
ablation‐based exploration and can be integrated with the search algorithm by constraining ac‐
tion differences along a trajectory.

10/18

Finally, robustness to schema and workload shifts benefits from modularity. Not all decisions
need to be learned. For example, legality checks, certain deterministic rewrites, and hard con‐
straints are stable and can remain rule‐based [?]. The learned components focus on cost‐
sensitive decisions where complex interactions matter. This reduces the effective shift surface
the model must handle. It also improves debuggability: when performance degrades, one can
isolate whether the issue arises from cost prediction, selectivity estimation, or a specific distri‐
bution decision.

5 Systems and Distributed Execution
Integrating an end‐to‐end learned optimizer into a distributed SQL engine requires careful at‐
tention to latency overhead, memory footprint, and interaction with execution mechanics. Op‐
timizer latency matters because planning occurs on the critical path of query submission [?]. If
the learned model increases planning time significantly, it may negate runtime gains for short
queries. Therefore the model must be engineered for inference efficiency. Graph encoders can
be expensive if they scale with the full schema size; a practical design encodes only the schema
subgraph relevant to the query plus a bounded neighborhood around referenced tables. This
neighborhood can be identified by foreign‐key edges and co‐location constraints. Embeddings
for the full schema can be precomputed and cached, and query‐specific message passing can
update only touched nodes [34]. This is analogous to incremental view maintenance, but at the
level of learned representations. Caching also mitigates workload shifts where many queries
share templates.

Data structures and storage internals influence cost. Columnar storage enables predicate push‐
down and late materialization, while row storage can favor point lookups. Partitioning and sort‐
ing determine whether merges can be local and whether exchanges can be avoided [35]. The
learned model must observe these physical properties, which implies that the optimizer’s meta‐
data layer should expose them in a stable API. Storage engines often maintain zone maps, min‐
max statistics, bloom filters, and dictionary encodings. These can be represented as features, but
they also impose constraints: for example, a bloom filter join may reduce network bytes by filter‐
ing before shuffle, but only if the filter fits in memory and can be broadcast cheaply. Including
such options in the action space expands complexity. A pragmatic approach is to treat certain
specialized techniques as conditional actions enabled only when prerequisites are satisfied [36].
The feasibility checker encodes these prerequisites, and the learned policy only ranks among
feasible actions.

Distributed execution can be modeled as a dataflow graph with stages separated by exchanges.
A plan’s latency is often determined by the longest stage plus exchange overhead, and skew
can dominate. Therefore, cost modeling must incorporate skew estimates. Let a partitioned
operator produce partitions with sizes b1, . . . , bp [37]. Ideal time scales with maxi bi under syn‐
chronous stages. Skew can be estimated from key frequency sketches. If the distribution of
key frequencies has a heavy tail, a small number of partitions become stragglers. The learned
model can incorporate features such as the Gini coefficient or entropy of key frequencies. En‐
tropy provides a compression and communication intuition: if keys are highly concentrated, the
entropy is low, implying that a small set of keys carries most mass, which correlates with skew
and poor parallel efficiency [38]. If pk are normalized frequencies, entropy H = −∑

k pk log pk
can be approximated from sketches. Low H suggests that repartitioning by that key may be risky,
motivating alternative strategies such as salting, adaptive skew handling, or choosing a different
join order that reduces the skewed key’s impact.

Communication efficiency is central in distributed SQL. Data movement can dominate runtime,
and network is a shared resource. Planning should consider bytes transferred and the number of
shuffle boundaries [39]. A useful abstraction is to approximate communication cost by the sum
over exchanges of the entropy‐coded size of messages. If an intermediate relation has B bytes
and compressibility factor c ∈ (0, 1], then effective transmitted bytes are cB . Compression ratio
depends on column encodings and value distributions. Estimating c can be done by sampling or
by using statistics such as dictionary cardinality and run‐length patterns. From an information‐

11/18

theoretic viewpoint, the minimum expected bits required to encode values is bounded below by
entropy; thus, for a column with entropy H bits per value and n values, transmitted bits are at
least nH [40]. While real compressors have overhead, the bound provides intuition for when
compression might help. The learned cost model can incorporate empirical compression ratios
from telemetry, enabling it to learn that certain intermediate results compress well and therefore
may be cheaper to shuffle than their raw size suggests.

Query optimization also interacts with scheduling and admission control. Engines may use fair
schedulers, queues, and preemption. Under such policies, the cost surface is non‐stationary:
the same plan can have different latency depending on queueing delay [41]. A robust optimizer
should avoid plans that are extremely resource‐hungry even if they are fast in isolation, because
they can cause system‐wide contention. This is captured by including resource objectives and
constraints. One can model the cluster as having budgets for CPU and network per timewindow
and use Lagrangian multipliers to penalize plans that exceed predicted budgets. If r (π) is pre‐
dicted resource usage vector and b is budget, the constrained optimization min Jlat(π) subject
to r (π) ≤ b yields KKT‐like conditions. In an online setting, the multipliers can be updated via
dual ascent:

λt+1 =
[
λt + η(r (πt) − b)

]
+
,

where [·]+ projects to nonnegative values [42]. This resembles congestion control: when re‐
source usage exceeds budget, λ increases and the planner becomes more conservative. Such
updates can be implemented without changing the core engine, by modifying the planner’s scor‐
ing function.

Plan enumeration and search must also be engineered. Classical dynamic programming for join
ordering has complexityO (k 22k) for k relations, which is feasible up tomoderate k but expensive
beyond. In distributed SQL, additional physical properties increase state space [43]. A learned‐
guided search can reduce enumeration by pruning. However, pruning must be safe. A useful
compromise is to run dynamic programming for small k and switch to beam search or iterative
deepening for larger k , using learned scores as heuristics. The learned heuristic should be mono‐
tone or at least consistent enough to avoid pathological search. While strict A* admissibility is
difficult because costs are learned, one can incorporate lower bounds from analytical models to
preserve pruning correctness: score a state by g (s) + h(s), where g is known partial cost and h
is a learned or analytical estimate of remaining cost, but clamp h below by a conservative analyt‐
ical bound to reduce the chance of underestimation [44]. This hybrid approach leverages both
learned flexibility and analytical safety.

Distributed engines often support adaptive query execution, where plans can change at runtime
based on observed cardinalities. This interacts with learning. An end‐to‐end learned optimizer
can be designed to output an adaptive policy rather than a fixed plan, specifying contingencies
such as switching from broadcast to shuffle if an intermediate exceeds a threshold. Such a pol‐
icy can be represented as a decision tree embedded in the plan, or as annotations that enable
runtime operators to choose among alternatives [45]. Learning such contingencies resembles
learning robust policies under partial observability. The advantage is improved robustness to
estimation error and workload shifts. The cost is increased complexity and potential overhead
in maintaining alternative paths. A conservative design limits adaptivity to a small number of
high‐impact switches, particularly around exchanges and join algorithms.

Another systems concern is determinism and debugging [46]. Learned models can introduce
non‐determinism if they use stochastic sampling during inference. For production, inference
should be deterministic given fixed inputs, so sampling can be disabled and argmax used. For
exploration, stochasticity can be enabled under controlled conditions. Logging is essential: the
optimizer should record features, embeddings, predicted costs, uncertainty, chosen actions, and
alternative candidates. This enables offline analysis and replay [47]. To manage storage, logs can
be compressed and sampled, and sensitive data such as literals can be anonymized or bucketed.

Finally, deploying learned optimization requires compatibility with query rewriting, security poli‐
cies, and governance. Some rewrites are mandated, such as enforcing row‐level security pred‐

12/18

icates. These constraints can be integrated into the logical plan before learning. The learned
optimizer then operates on an already constrained plan [48]. This avoids unsafe behavior where
the model might inadvertently remove required filters. Similarly, resource governance policies
can be encoded as constraints. The earlier Lagrangian approach provides amechanism to enforce
such constraints while still allowing learning to optimize within the feasible region.

6 Evaluation Methodology and Reproducibility
Evaluating a learned optimizer under schema and workload shifts requires protocols that sepa‐
rate interpolation from extrapolation. A core principle is that test sets should include queries
and schemas that differ structurally from training [49]. For schema shifts, one can evaluate on
databases with different numbers of tables, different relationship graphs, and different attribute
distributions. For workload shifts, one can evaluate on query templates not seen during train‐
ing, altered predicate distributions, and different join graph motifs. Because engine behavior
depends on hardware and configuration, evaluation should report cluster details, including num‐
ber of nodes, CPU model, memory, storage type, network bandwidth, and scheduler settings. It
should also control for concurrency by running experiments under defined load levels. Results
should include not only average latency but also tail metrics, such as 95% and 99% quantiles, be‐
cause robustness is primarily about avoiding severe regressions [50]. Reporting resource usage,
such as network bytes and CPU‐seconds, helps interpret whether improvements are achieved
by shifting cost to shared resources.

A practical evaluation can compare multiple planners: a baseline rule‐based optimizer, a baseline
augmented with learned cardinality or cost models, and the end‐to‐end learned optimizer with
robustness mechanisms. Comparisons should include ablations that remove uncertainty penal‐
ties, shift detection, online adaptation, and sketch‐aware bounds, to isolate their contributions.
Because model training can be sensitive to random seeds and data splits, reproducibility requires
reporting seeds, using multiple runs, and providing confidence intervals. In addition, training
data generation should be described precisely: whether traces are collected from production‐
like workloads, from synthetic generators, or from enumerated plan runs [51]. If enumerating
plans to obtain labels, the exploration policy must be described, since it affects which plans are
observed and can bias learning.

Instrumentation is necessary to measure realized costs. Distributed engines provide stage‐level
metrics: input/output rows, bytes, time, spill events, and shuffle statistics. These metrics can be
used to train operator‐level cost models and to diagnose failures. For example, if a plan under‐
performs due to skew, logs should show partition size distributions and straggler tasks [52]. A
robust optimizer should reduce the frequency of such pathologies under shift. Evaluation should
include stress tests where skew is injected by modifying key distributions, and where histogram
staleness is simulated by withholding statistics updates. Such tests approximate production con‐
ditions where distributions drift.

When approximate sketches are used, evaluationmustmeasure their overhead and effect on plan
quality. Sketch maintenance consumes CPU and memory and may require scanning or sampling
[53]. However, sketches can also be updated incrementally. Experiments should report the
sketch parameters, such as width and depth for count‐min sketches or register count for distinct‐
count sketches, and measure relative error in estimates. The planner’s robustness mechanism
that uses confidence intervals should be evaluated by measuring how often it prevents harmful
threshold crossings, such as avoiding broadcast when the true size exceeds the broadcast limit.
Because sketches trade memory for accuracy, one can evaluate sensitivity to sketch size. A
neutral interpretation considers both the runtime benefit from reduced communication and the
risk that approximation error leads to worse plans [54].

The evaluation of robustness should explicitly quantify shift. A convenient approach is to define a
shift score based on embedding distances or feature divergences and then stratify results by shift
score. For example, compute the Mahalanobis distance in embedding space and group queries
into bins of low, medium, and high shift. Report performance within each bin. If the learned
optimizer degrades gracefully as shift increases, this suggests robustness [55]. If it performs

13/18

well only in low‐shift bins and collapses in high‐shift bins, then robustness mechanisms may be
insufficient. Another useful analysis is calibration: compare predicted uncertainty to observed
absolute error of cost predictions. Calibration curves can be computed by binning predictions
by σ and measuring mean squared error per bin. Better‐calibrated uncertainty supports safer
decision‐making.

Search efficiency is another metric [56]. Learned‐guided search should reduce the number of
explored states or plans relative to baselines while maintaining or improving plan quality. Report
planning time and peak memory. Because planning time can vary with query size, report scaling
as a function of number of relations and predicates. A Big‐O discussion is useful but insuffi‐
cient; empirical scaling curves matter. If the learned model uses graph neural networks, report
inference time as a function of graph size, and whether caching is used [57]. When caching is
used, report hit rates under different workloads, because workload shifts may reduce caching
effectiveness.

A careful evaluation also considers failure handling. When the optimizer falls back to baseline
due to high uncertainty or detected shift, report how often this occurs and what performance
results. Frequent fallback may indicate that the learned component is overly conservative or
insufficiently trained for the target domain. Rare fallback with occasional severe regressions may
indicate insufficient safety [58]. The trade‐off can be tuned via the uncertainty penalty κ and
shift thresholds. Reporting these knobs and their effects supports reproducibility and practical
deployment decisions.

Reproducibility requires artifacts and deterministic pipelines. Model code should fix random
seeds, log hyperparameters, and version dependencies. Data pipelines should record schema
snapshots, statistics versions, and cluster configuration [59]. Because distributed execution is
noisy, experiments should be repeated and run‐order randomized to reduce bias from transient
cluster states. When possible, isolated clusters should be used. If isolation is impossible, teleme‐
try should be recorded and used to filter out runs with anomalous interference. For model evalu‐
ation, it can be useful to replay query execution in a simulator that approximates engine behavior,
enabling large‐scale comparisons. However, simulators can diverge from reality, so evaluation
should report both simulated and measured results and analyze discrepancies [60]. The cost
model can be trained on simulated data and fine‐tuned on real traces; evaluation should sepa‐
rate these phases to clarify how much relies on simulation fidelity.

Finally, evaluation should include qualitative analysis of plan changes under shift. For example,
when a schema changes by adding an index or changing partitioning, a robust optimizer should
adjust exchange decisions accordingly. When workload shifts to more selective predicates, the
optimizer may choose different join orders. These behaviors can be examined by comparing
plan graphs and operator‐level costs [61]. Such analysis helps verify that improvements are not
artifacts of measurement noise and can reveal systematic failure modes, such as consistently
underestimating costs of wide shuffles or overusing broadcasts under uncertain cardinalities.

7 Conclusion
End‐to‐end learned query optimization for distributed SQLmust reconcile two competing forces:
the desire to exploit data‐driven models that capture complex cost interactions, and the need
for robustness under schema and workload shifts that can invalidate learned correlations. This
paper presented a framework that treats planning as structured prediction over physical plans,
uses schema‐ and query‐graph embeddings to support variable schemas, and aligns learning ob‐
jectives with realized execution costs while incorporating constraints on resources and risk. The
approach combines learned scoring with search and classical feasibility checks, enabling practical
integration into existing optimizers without relinquishing correctness constraints. Differentiable
relaxations of discrete decisions and hybrid training strategies connect imitation learning, bandit
feedback, and cost‐model learning, improving sample efficiency relative to purely reinforcement‐
based methods in database settings [62].

Robustness was addressed throughmultiple mechanisms that are complementary rather than ex‐

14/18

clusive. Schema‐invariant representations reduce reliance on table identities and support gener‐
alization across evolving schemas. Uncertainty‐aware cost prediction and conservative decision
rules reduce overconfident threshold crossings, particularly around distribution strategies where
errors are costly. Shift detection in embedding space enables adaptive conservatism and con‐
trolled fallback. Distributionally robust training and group‐aware objectives emphasize tail per‐
formance and hard query motifs [63]. Online adaptation with trust regions supports incremental
learning under persistent workload changes while mitigating catastrophic forgetting. The inte‐
gration of approximate sketches and confidence‐aware planning ties communication efficiency
to bounded estimation error, acknowledging that distributed optimization is inseparable from
the cost of maintaining accurate statistics.

Systems integration considerations shaped the design: inference and planning overhead must
be controlled via caching, bounded neighborhoods, and hybrid search strategies; distributed ex‐
ecution effects such as skew, critical paths, and contention require cost models that go beyond
additive operator sums; and governance and determinism require stable APIs, logging, and safe
exploration policies. Evaluation practices that explicitly test across schema and workload shifts,
report tail metrics, and document reproducibility are necessary to assess whether a learned opti‐
mizer provides predictable behavior rather than benchmark‐specific gains. Overall, end‐to‐end
learning can be made compatible with robust distributed SQL optimization when it is embedded
within a constraint‐aware, uncertainty‐aware, and systems‐informed architecture. The practi‐
cal utility depends on careful engineering and evaluation under realistic shift scenarios, and on
maintaining safe fallbacks and guardrails that limit the impact of inevitable modeling errors in
non‐stationary environments [64].

References
[1] T. Heins, R. Glebke, M. Stoffers, S. Gurumurthy, J. Heesemann, M. Josevski, A. Monti, and

K. Wehrle, “Delay‐aware model predictive control for fast frequency control,” in 2023 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), pp. 1–7, IEEE, 10 2023.

[2] IM ‐ Tofino + P4: A Strong Compound for AQM on High‐Speed Networks?, 5 2021.

[3] A. Heß, F. J. Hauck, and E. Meißner, “Consensus‐agnostic state‐machine replication,” in
Proceedings of the 25th International Middleware Conference, pp. 341–353, ACM, 12 2024.

[4] W. B. Daszczuk, Fairness inDistributed SystemsVerification, pp. 139–159. Germany: Springer
International Publishing, 3 2019.

[5] R. Malik, S. Kim, X. Jin, C. Ramachandran, J. Han, I. Gupta, and K. Nahrstedt, “Mlr‐index: An
index structure for fast and scalable similarity search in high dimensions,” in International
Conference on Scientific and Statistical Database Management, pp. 167–184, Springer, 2009.

[6] Y. Tyryshkina, “Understanding join strategies in distributed systems,” in 2021 International
Seminar on Electron Devices Design and Production (SED), pp. 1–4, IEEE, 4 2021.

[7] R. Lichtenthäler and G. Wirtz, “An experimental validation of architectural measures for
cloud‐native quality evaluations,” in 2025 IEEE 18th International Conference on Cloud Com‐
puting (CLOUD), pp. 374–384, IEEE, 7 2025.

[8] I. Zhuzhgina and A. Lazarev, “An intelligently distributed system for controlling information
flows,” E3S Web of Conferences, vol. 431, pp. 5017–05017, 10 2023.

[9] N. S. Chatharajupalli, R. Rotta, R. Karnapke, and J. Nolte, “Vibromote: Wi‐fi‐based mesh
communication for railway bridge inspection and monitoring,” in 2025 International Sympo‐
sium on Networks, Computers and Communications (ISNCC), pp. 1–6, IEEE, 10 2025.

[10] R. Kemp, Devising – Embodied Creativity in Distributed Systems, pp. 48–57. Routledge, 9
2018.

15/18

[11] F. Ansari and A. Afzal, A Grid‐Connected Distributed System for PV System, pp. 919–924.
Springer Singapore, 1 2021.

[12] A. Bolfing, Distributed Systems, pp. 143–198. Oxford University PressOxford, 9 2020.

[13] A. Ba, F. O’Donncha, J. Ploennigs, and M. Azmat, “Efficient extraction of insights at the
edges of distributed systems,” in 2023 IEEE International Conference on Big Data (BigData),
pp. 1610–1619, IEEE, 12 2023.

[14] R. Müller, S. Langer, F. Ritz, C. Roch, S. Illium, and C. Linnhoff‐Popien, PKDD/ECML Work‐
shops (2) ‐ Soccer Team Vectors., pp. 247–257. Germany: Springer International Publishing,
3 2020.

[15] T. He and R. Buyya, “A taxonomy of live migration management in cloud computing,” ACM
Computing Surveys, vol. 56, pp. 1–33, 10 2023.

[16] E. Becks, P. Zdankin, V. Matkovic, and T. Weis, “Complexity of smart home setups: A qual‐
itative user study on smart home assistance and implications on technical requirements,”
Technologies, vol. 11, pp. 9–9, 1 2023.

[17] Y. Braidiz, D. Efimov, A. Polyakov, and W. Perruquetti, “On robustness of finite‐time stabil‐
ity of homogeneous affine nonlinear systems and cascade interconnections,” International
Journal of Control, pp. 1–11, 9 2020.

[18] E. E. Mohammed, R. Y. S. Naji, A. A. Hussein, M. A. Saeed, and R. A. M. A. Selwi, “Anomaly
detection system for secure cloud computing environment using machine learning,” in
2025 5th International Conference on Emerging Smart Technologies and Applications (eSmarTA),
pp. 1–9, IEEE, 8 2025.

[19] R. Chandrasekar, R. Suresh, and S. Ponnambalam, “Evaluating an obstacle avoidance strat‐
egy to ant colony optimization algorithm for classification in event logs,” in 2006 Interna‐
tional Conference on Advanced Computing and Communications, pp. 628–629, IEEE, 2006.

[20] R. Kuznets, “Communication modalities,” 5 2024.

[21] J. D. Herath, P. Yang, and G. Yan, “Codaspy ‐ real‐time evasion attacks against deep learning‐
based anomaly detection from distributed system logs,” in Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy, pp. 29–40, ACM, 4 2021.

[22] J. Flak, T. Skowron, R. Cupek, M. Fojcik, D. Caban, and A. Domański, “Zigbee network for
agv communication in industrial environments,” in 2023 IEEE 10th International Conference
on Data Science and Advanced Analytics (DSAA), pp. 1–9, IEEE, 10 2023.

[23] M. Breyer, A. V. Craen, and D. Pflüger, “A comparison of sycl, opencl, cuda, and openmp
for massively parallel support vector machine classification on multi‐vendor hardware,” in
International Workshop on OpenCL, pp. 1–12, ACM, 5 2022.

[24] T. Pusztai, C. Marcelino, and S. Nastic, “Hyperdrive: Scheduling serverless functions in the
edge‐cloud‐space 3d continuum,” in 2024 IEEE/ACM Symposium on Edge Computing (SEC),
pp. 265–278, IEEE, 12 2024.

[25] T. Srinivasan, R. Chandrasekar, V. Vijaykumar, V. Mahadevan, A. Meyyappan, and
A. Manikandan, “Localized tree change multicast protocol for mobile ad hoc networks,” in
2006 International Conference on Wireless and Mobile Communications (ICWMC’06), pp. 44–
44, IEEE, 2006.

[26] F. Strnisa, M. Jancic, and G. Kosec, “A meshless solution of a small‐strain plasticity problem,”
in 2022 45th Jubilee International Convention on Information, Communication and Electronic
Technology (MIPRO), pp. 257–262, IEEE, 5 2022.

[27] G. Farina, “Tractable reliable communication in compromised networks,” 12 2020.

[28] Z. J. Hamad and S. R. M. Zeebaree, “Recourses utilization in a distributed system: A review,”
10 2021.

16/18

[29] D. T. Dang and D. Hwang, “Consensus‐based methods for distributed systems, blockchain,
and voting: a survey,” Journal of Information and Telecommunication, pp. 1–24, 10 2024.

[30] R. Rotta, J. Schulz, B. Naumann, N. S. Chatharajupalli, J. Nolte, and M. Werner, “B.a.t.m.a.n.
mesh networking on esp32’s 802.11,” in 2024 IEEE 49th Conference on Local Computer Net‐
works (LCN), vol. 3, pp. 1–7, IEEE, 10 2024.

[31] Y. Tytarchuk, S. Pakhomov, D. Beirak, V. Sydorchuk, and S. V. Zaitseva, “The impact of
distributed systems on the architecture and design of computer systems: advantages and
challenges,” Data and Metadata, vol. 3, 12 2024.

[32] F. Neves, R. Vilaca, and J. Pereira, “Detailed black‐box monitoring of distributed systems,”
ACM SIGAPP Applied Computing Review, vol. 21, pp. 24–36, 7 2021.

[33] R. Chandrasekar and T. Srinivasan, “An improved probabilistic ant based clustering for dis‐
tributed databases,” in Proceedings of the 20th International Joint Conference on Artificial In‐
telligence, IJCAI, pp. 2701–2706, 2007.

[34] S. Hussain, A. Sajjad, and Z. Javed, “Deadlock detection in distributed system,” 1 2020.

[35] E. Becks, M. Josten, V. Matkovic, and T. Weis, “Revising poor man’s eye tracker for crowd‐
sourced studies,” in 2023 IEEE International Conference on Pervasive Computing and Commu‐
nications Workshops and other Affiliated Events (PerCom Workshops), pp. 328–330, IEEE, 3
2023.

[36] A. Furutanpey, P. A. Frangoudis, P. Szabo, and S. Dustdar, “Adversarial robustness of bottle‐
neck injected deep neural networks for task‐oriented communication,” in 2025 IEEE Interna‐
tional Conference on Machine Learning for Communication and Networking (ICMLCN), pp. 1–6,
IEEE, 5 2025.

[37] A. Fentis, C. Lytridis, V. G. Kaburlasos, E. Vrochidou, T. Pachidis, E. Bahatti, and M. Mes‐
tari, “A machine learning based approach for next‐day photovoltaic power forecasting,” in
2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), pp. 1–
8, IEEE, 10 2020.

[38] J. Yuan, A. Le‐Tuan, M. Hauswirth, and D. Le‐Phuoc, “Cooperative students: Navigating
unsupervised domain adaptation in nighttime object detection,” in 2024 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6, IEEE, 7 2024.

[39] A Generic Review of Messenger Application: WeChat and WhatsApp, vol. 1, 12 2020.

[40] G. Neumann, P. Grace, D. Burns, and M. Surridge, “Pseudonymization risk analysis in dis‐
tributed systems,” Journal of Internet Services and Applications, vol. 10, pp. 1–16, 1 2019.

[41] M. Witter and A. R. D. Vit, “Blockchain e sistemas distribuídos: conceitos básicos e impli‐
cações,” 3 2024.

[42] AAMAS ‐ Achieving Sybil‐Proofness in DistributedWork Systems, 9 2021.

[43] E. M. D. Souza, N. Suzin, C. A. Zeferino, and D. R. Melo, “Interactive simulator for risc‐
v assembly programming,” in 2025 17th Seminar on Power Electronics and Control (SEPOC),
pp. 1–8, IEEE, 11 2025.

[44] C. Chenavier and M. Lucas, “The diamond lemma for non‐terminating rewriting systems
using deterministic reduction strategies,” 6 2019.

[45] M. Sun, Y. Teng, F. Zhao, J. Qi, D. Jiang, and C. Fan, Spatio‐Textual Group Skyline Query,
pp. 34–50. Germany: Springer Nature Switzerland, 9 2023.

[46] V. Vijaykumar, R. Chandrasekar, and T. Srinivasan, “An obstacle avoidance strategy to ant
colony optimization algorithm for classification in event logs,” in 2006 IEEE Conference on
Cybernetics and Intelligent Systems, pp. 1–6, IEEE, 2006.

17/18

[47] “Three‐layer distributed system based on bayesian classifier,” Distributed Processing System,
vol. 3, 10 2022.

[48] C. Hanane, A. Battou, andO. Baz, “Performance security in distributed system: Comparative
study,” International Journal of Computer Applications, vol. 179, pp. 29–33, 1 2018.

[49] I.‐A. Secara, Challenges and Considerations in Developing and Architecting Large‐scale Dis‐
tributed Systems, pp. 1–15. B P International (a part of SCIENCEDOMAIN International),
4 2023.

[50] Z. Dong, C. Tang, J. Wang, Z. Wang, H. Chen, and B. Zang, “Optimistic transaction process‐
ing in deterministic database,” Journal of Computer Science and Technology, vol. 35, pp. 382–
394, 3 2020.

[51] M. Jančič, M. Rot, and G. Kosec, Spatially‐Varying Meshless Approximation Method
for Enhanced Computational Efficiency, pp. 500–514. Germany: Springer Nature Switzer‐
land, 6 2023.

[52] R. Laidig, F. Shibli, B. Tufekci, F. Dürr, and C. Tunc, “Improving drone communication qos
through adaptive redundancy,” in 2025 34th International Conference on Computer Commu‐
nications and Networks (ICCCN), pp. 1–9, IEEE, 8 2025.

[53] Scalable Distributed Systems, pp. 2290–2290. Springer New York, 6 2018.

[54] On finite‐time stability analysis of homogeneous Persidskii systems using LMIs, 11 2021.

[55] C. Deng, Z. Shen, D. Li, Z.Mi, and Y. Xia, “The design and optimization ofmemory ballooning
in sev confidential virtual machines,” in 2024 IEEE International Conference on Joint Cloud
Computing (JCC), pp. 9–16, IEEE, 7 2024.

[56] M. Zakarya, L. Gillam, K. Salah, O. F. Rana, S. Tirunagari, and R. BUYYA, “Colocateme:
Aggregation‐based, energy, performance and cost aware vm placement and consolidation
in heterogeneous iaas clouds,” 6 2021.

[57] A. Arman, P. Bellini, D. Bologna, P. Nesi, G. Pantaleo, and M. Paolucci, “Automating iot data
ingestion enabling visual representation.,” Sensors (Basel, Switzerland), vol. 21, pp. 8429–
8429, 12 2021.

[58] R. Ângelo Santos Filipe, “Client‐side monitoring of distributed systems,” 2 2020.

[59] L. Guegan, B. L. Amersho, A.‐C.Orgerie, andM.Quinson,AINA ‐A Large‐ScaleWiredNetwork
Energy Model for Flow‐Level Simulations, vol. 926, pp. 1047–1058. Springer International
Publishing, 3 2019.

[60] L. Su, X. Wang, and L. Wang, “A resilience analysis method for distributed system based
on complex network,” in 2021 IEEE International Conference on Unmanned Systems (ICUS),
pp. 238–243, IEEE, 10 2021.

[61] R. Malik, C. Ramachandran, I. Gupta, and K. Nahrstedt, “Samera: a scalable and memory‐
efficient feature extraction algorithm for short 3d video segments.,” in IMMERSCOM, p. 18,
2009.

[62] B. K. Ozkan, R. Majumdar, F. Niksic, M. T. Befrouei, and G. Weissenbacher, “Randomized
testing of distributed systems with probabilistic guarantees,” Proceedings of the ACM on Pro‐
gramming Languages, vol. 2, pp. 160–28, 10 2018.

[63] X. Song, R. Chen, H. Song, Y. Zhang, and H. Chen, “Unified and near‐optimal multi‐gpu
cache for embedding‐based deep learning,” ACM Transactions on Computer Systems, vol. 44,
pp. 1–32, 11 2025.

[64] K. M. Goeschka, R. P. S. de Oliveira, P. Pietzuch, and G. Russello, “Session details: Theme:
Distributed systems: Dads ‐ dependable, adaptive, and secure distributed systems track,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, ACM, 4 2019.

18/18

	Introduction
	Problem Formulation and Modeling
	End-to-End Learned Optimizer
	Robustness to Schema and Workload Shifts
	Systems and Distributed Execution
	Evaluation Methodology and Reproducibility
	Conclusion

